
- •Государственное образовательное учреждение высшего профессионального
- •Научный редактор
- •Введение техническая термодинамика как теоретическая основа теплоэнергетики
- •1. Общие определения и понятия
- •1.1. Термодинамическая система
- •1.2. Термодинамические параметры состояния
- •Основные термические параметры состояния
- •Удельный объем
- •Давление
- •Соотношения единиц измерения давления
- •Температура
- •1.3. Основные понятия, характеризующие термодинамическую систему
- •1.3.1. Равновесные и неравновесные состояния
- •Термодинамических тел и систем
- •1.3.2. Уравнение состояния термодинамической системы
- •1.3.3. Термические коэффициенты
- •1.3.4. Термодинамический процесс
- •2. Первый закон термодинамики для закрытой системы
- •2.1. Работа изменения объема
- •2.2. Теплота, теплоемкость, энтропия
- •2.3. Внутренняя энергия
- •2.4. Первый закон термодинамики для закрытой системы
- •2.4.1. Аналитические выражения первого закона термодинамики.
- •2.4.2. Энтальпия
- •3. Газы и газовые смеси
- •3.1. Законы идеальных газов
- •3.1.1. Внутренняя энергия идеального газа
- •3.1.2. Теплоемкости газов
- •Удельные теплоемкости
- •Теплоемкости процессов
- •Теплоемкости идеальных газов
- •Теплоемкость реальных газов
- •Отношение изобарной и изохорной теплоемкостей
- •3.1.3. Энтальпия идеальных газов
- •3.1.4. Энтропия идеальных газов
- •3.2. Газовые смеси
- •Основные характеристики смеси газов
- •Теплоемкости газовых смесей
- •4. Газовые процессы
- •4.1. Политропные процессы
- •4.2. Частные случаи политропных процессов
- •Уравнения процессов, расчетные выражения их теплоты, работы, изменения внутренней энерги, энтальпии и энтропи
- •4.3. Изображение политропных процессов в р,V и t,s- диаграммах Политропа в р,V- диаграмме
- •Политропа в t,s- диаграмме
- •4.4. Установление показателя политропы по опытным данным
- •4.5. Качественный и количественный анализ политропных процессов в р,V- и t,s- диаграммах
- •4.6. Определение термодинамических свойств идеальных газов с учетом влияния температуры на их изобарную и изохорную теплоемкости
- •Определение энергетических параметров идеальных газов с учетом влияния температуры на cp и cv
- •5. Реальные газы и пары
- •5.1. Термические свойства реальных газов
- •5.2. Уравнения состояния реальных газов. Энергетические свойства реальных газов
- •6. Термодинамические свойства воды и водяного пара
- •6.1. Фазовые состояния и превращения воды
- •6.2. Фазовые диаграммы р,t-, р,V- и t,s для н2о
- •6.3. Жидкость на линии фазового перехода
- •6.4. Сухой насыщенный пар
- •6.5. Влажный насыщенный пар
- •6.6. Перегретый пар
- •6.7. Таблицы термодинамических свойств воды и водяного пара
- •6.8. Диаграмма t,s для воды и водяного пара
- •6.9. Диаграмма h,s для воды и водяного пара
- •6.10. Основные процессы изменения состояния водяного пара
- •Адиабатный процесс
- •Изохорный процесс
- •Изобарный процесс
- •Изотермический процесс
- •7. Влажный воздух
- •7.1. Основные характеристики влажного воздуха
- •7.2. Характеристики атмосферного влажного воздуха
- •Психрометр
- •Область ненасыщенного влажного воздуха
- •Область перенасыщенного влажного воздуха
- •Изображение в h,d- диаграмме изотерм меньше 0 оС и особенности характеристик влажного воздуха при отрицательных температурах
- •Пример пользования h,d- диаграммой
- •Изображение процессов влажного воздуха в h,d- диаграмме
- •8. Второй закон термодинамики
- •8.1. Замкнутые процессы (циклы)
- •8.1.1. Коэффициенты, характеризующие тепловую экономичность обратимых циклов
- •8.1.2. Цикл Карно
- •8.1.3. Обратный цикл Карно
- •8.1.4. Регенеративный (обобщенный) цикл Карно
- •8.1.5. Теорема Карно
- •8.1.6. Термодинамическая шкала температур.
- •8.2. Энтропия реальных тел и ее изменение в необратимых
- •8.3. Изменение энтропии изолированной системы
- •8.3.1. Изменение энтропии изолированной системы
- •8.3.2. Изменение энтропии изолированной системы
- •8.3.3. Принцип возрастания энтропии изолированной системы
- •8.4. Получение работы в изолированной системе. Эксергия в объеме и ее потери
- •8.4.1. Эксергия в объеме
- •8.4.2. Практическое значение эксергии
- •8.4.2.1. Определение эксергии источников работы, имеющих
- •8.4.2.2. Определение влияния необратимости на полезную работу в изолированной системе
- •Необратимый теплообмен
- •Необратимость, обусловленная преобразованием работы в теплоту путем трения
- •Необратимость при расширении газа в вакуум
- •Необратимость при диффузионном смешении газов с одинаковыми температурами и давлениями
- •Изменение энтропии газов в этом процессе будет определяться выражением
- •Необратимое преобразование теплоты в работу при источнике работы с постоянной температурой
- •Необратимое преобразование теплоты в работу при источнике работы с конечной теплоемкостью
- •Методы оценки тепловой экономичности реальных циклов тепловых машин
- •Заключение
- •Библиографический список
- •Оглавление
- •1.3.2. Уравнение состояния термодинамической системы……...……. 15
- •1.3.3. Термические коэффициенты……………………………………….. 17
- •Чухин Иван Михайлович
- •Часть 1
- •153003, Г. Иваново, ул. Рабфаковская, 34.
- •153025, Г. Иваново, ул. Дзержинского, 39.
Соотношения единиц измерения давления
Кроме единиц СИ в технике используются и другие единицы измерения давления. Приведем основные из них и их взаимосвязь:
– 1 техническая атмосфера
Р = 1 кгс/см2 = 0,981 бар = 10 м вод.ст.= 735,6 мм рт.ст.;
– 1 бар
Р = 1 бар = 750 мм рт.ст. = 10,2 м вод.ст. = 1,02 кгс/см2.
В физике используется понятие физической атмосферы – это давление, соответствующее 760 мм ртутного столба над уровнем моря при температуре 0 оC:
1 физ.атм = 760 мм рт.ст.= 1,0333 кгс/см2 = 1,0133 бар .
При переходе от одной единицы измерения к другой необходимо заменить единицы измерения несистемных величин на соответствующие им в СИ, оперируя с ними как с арифметическими операторами. Например:
1 кгс/см2 = 0,981 Н/10-4 м2 = 9,81·10-4 Н/м2 = 0,981 бар.
Температура
Температура – представляет собой меру нагретости тел. В быту температуру отождествляют с понятиями тепло – теплый и холодно – холодный.
В технической термодинамике под температурой понимается величина, пропорциональная энергии движения молекул и атомов данного тела.
Для твердого тела с жесткой кристаллической решеткой температура будет пропорциональна внутренней энергии колебательного движения атомов в молекуле.
Для жидкого и газообразного тела абсолютная температура прямо пропорциональна средней кинетической энергии беспорядочного движения молекулы, приходящейся на одну степень свободы ее движения (поступательного). Эту зависимость для газов можно выразить в виде
,
(1.10)
где – коэффициент пропорциональности;
Т – абсолютная температура, К;
m – масса одной молекулы, кг;
W – средняя скорость поступательного движения молекулы на одну степень свободы, м/с.
Температура определяет направление перехода тепловой энергии (теплоты). Теплота переходит от тела с более высокой температурой к телу с более низкой температурой. Этот процесс энергетического обмена будет самопроизвольно протекать до полного выравнивания температур обоих тел. При этом у первого тела температура будет уменьшаться, а у второго – увеличиваться до установления термического равновесия.
Температура, так же как и давление, относится к интенсивным параметрам, ее измерение осуществляется с использованием экстенсивных свойств вещества. Например, через изменение объема в жидкостных термометрах или электрического сопротивления в термометрах сопротивления, через изменение ЭДС в спае термопары и т.п.
На практике используются две температурные шкалы (рис.1.7). Абсолютная шкала температур Кельвина – ее нижняя граница соответствует точке абсолютного нуля, где отсутствует молекулярное движение (практически недостижима) и единственной экспериментальной точкой принята тройная точка воды, лежащая выше точки таяния льда при нормальном атмосферном давлении (760 мм рт.ст.) на 0,01 о, этой точке присвоено значение температуры 273,16 К. Это значение выбрано для того, чтобы разность температур кипения и таяния химически чистой воды при нормальном физическом давлении составляла 100 о. Температура в кельвинах соответствует СИ и обозначается как Т К.
Вторая
– стоградусная шкала температур Цельсия
– широко используется в практике. Эта
шкала имеет две опытные точки: 0оС
и 100 оС,
она всем хоошо известна. Температура
на ней обозначается как t оС.
Между абсолютной температурой по шкале
Кельвина и температурой по шкале Цельсия
имеется
соотношение:
T = t + 273,15 . (1.11)
Из (1.11) следует, что температуре 0 оС соответствует температура +273,15 К; а 0 К соответствует -273,15 оС.
В англоязычных странах и США используется шкала Фаренгейта, для которой справедливо соотношение F = 1,8t + 32.
В дальнейшем изложении материала будет использоваться абсолютная шкала температур Кельвина, как и требует Международная система единиц (СИ). В тех случаях, где практическая целесообразность диктует использование шкалы Цельсия, она будет приводиться совместно со шкалой Кельвина.