Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Колесников А.В. - Лекции по курсу Испытания конструкций и систем космических аппаратов [2007,RUS].doc
Скачиваний:
448
Добавлен:
24.07.2017
Размер:
8.59 Mб
Скачать

Колесников А.В.

ЛЕКЦИИ ПО КУРСУ

«Испытания конструкций и систем космических аппаратов»

(специальность 1307, 10-ый семестр)

2007 Г.

СОДЕРЖАНИЕ

Номер лекции

Рассматриваемые на

лекции темы

Стр.

1

Основные этапы разработки КА. Цель, задачи и критерии эффективности экспериментальной отработки КА. Классификация испытаний КА.

3

2, 3

Факторы космического полета, оказывающие влияние на состояние и работоспособность конструкции, оборудования и приборов КА.

8

4

Статические и вибрационные испытания.

23

5

Испытания на воздействие инерционных и ударных нагрузок.

30

6

Газодинамические испытания КА.

36

7

Испытания на воздействие акустических нагрузок.

44

8

Общая характеристика тепловой отработки КА. Проблемы тепловакуумных испытаний КА.

49

9

Методы экспериментального моделирования космического вакуума и радиационных свойств космического пространства.

55

10, 11

Воспроизведение в экспериментальных установках влияния солнечного излучения и излучения планет на тепловое состояние КА.

62

12

Вакуумно-температурные испытания КА. Невакуумные испытания герметичных отсеков. Испытания двигательных установок КА.

75

13

Методические вопросы воспроизведением расчетных тепловых нагрузок на испытуемый объект при проведении тепловакуумных, вакуумно-температурных, теплопрочностных и электрических испытаний.

82

14

Экспериментальное исследование тепловой защиты КА.

87

15

Испытания на воздействие радиационных факторов и магнитных полей. Электрические испытания.

94

16

Предстартовые испытания и подготовка к летным испытаниям КА.

100

17

Список литературных источников, рекомендуемых для изучения отдельных разделов данного курса.

107

Лекция N 1

Тема лекции: Основные этапы разработки КА Цель, задачи и критерии эффективности экспериментальной отработки КА. Классификация испытаний КА.

Основные этапы разработки КА.

Процесс создания изделий космической техники обычно состоит из следующих основных взаимосвязанных этапов: 1)проектирование; 2)разработка опытных образцов изделия, которые могут не в полной мере соответствовать штатному его варианту по комплектации приборами, оборудованием и даже некоторыми системами; 3)наземная экспериментальная отработка отдельных агрегатов, систем и аппарата в целом; 4) производство штатного изделия, 5) летно-конструкторские испытания штатного изделия, если такие испытания целесообразны и возможны по экономическим и другим соображениям, обусловленными предназначением аппарата и стоимостью и особенностью установленной на нем научной аппаратуры. Не раскрывая в полной мере содержания перечисленных этапов создания КА, рассмотрим лишь основные закономерности, свойственные этим этапам и отметим роль испытаний в оптимизации параметров систем создаваемого КА.

Проектирование является одним из начальных этапов создания КА. Непосредственный результат проектирования - проект. Он должен отражать общий замысел и план создания аппарата, а также конкретные технические решения по его элементам, агрегатам, бортовым системам. Проектирование - сложный творческий процесс поиска и нахождения решений, обеспечивающий создание технического объекта, удовлетворяющего заданным требованиям. Затраты на выполнение собственно проекта в сумме общих затрат на создание КА с учетом подготовки производства, изготовления опытных образцов и их экспериментальной отработки относительно невелики. Однако безошибочное проектирование предопределяет возможность создания КА в установленные сроки и с минимальными суммарными затратами. Такое положение очевидно, поскольку принципиальные ошибки проектирования не могут быть исправлены ни в процессе изготовления опытных образцов КА, ни в процессе их экспериментальной отработки без больших материальных затрат и существенного увеличения сроков создания аппарата.

В самом процессе проектирования можно выделить три этапа: разработка технических требований; эскизное проектирование; техническое проектирование;

На этапе разработки технических требований проводится техническое и экономическое обоснование целесообразности разработки данного космического аппарата, предназначенного для решения каких - то актуальных задач, а также формулируются и обосновываются технические требования к системам аппарата, габаритным и весовым его характеристикам. На этом же этапе определяются также критерии эффективности систем аппарата и критерии эффективности КА в целом.

На этапе эскизного проектирования, исходя из сформулированных общих требований к КА и его системам, определяется его структура, технические характеристики комплектующих элементов и производится компоновка систем аппарата. Синтез КА на этом этапе начинается условиях большой неопределенности и проводится на основе упрощенной идеализированной математической модели, построенной на основании опыта, накопленного при проектировании аналогичных систем, и эрудиции специалистов, участвующих в проектировании. На начальных стадиях этого этапа для анализа влияния основных параметров разрабатываемого изделия на его качественные показатели применяются, как правило, приближенные математические модели, даже чаще всего локальные, составленные для отдельных частей КА. Определенные с помощью таких моделей параметры системы являются приближенными и требуют своего дальнейшего уточнения на последующем этапе проектирования.

На этапе технического проектирования разрабатывается техническая документация, необходимая для изготовления экспериментальных образцов и макетов агрегатов, систем и КА в целом для проведения их экспериментальной отработки в лабораторных и стендовых условиях.

Цель и задачи экспериментальной отработки

Целью экспериментальной отработки КА является доведение КА в целом, а также комплектующих его блоков и агрегатов до состояния, полностью удовлетворяющего требованиям технического задания.

Экспериментальная отработка, являясь естественным продолжением проектирования аппарата, завершает процесс создания КА. Однако она является не только конечным звеном, но и самым тесным образом переплетается с этапами проектирования. При проектировании каждого КА учитываются не только теоретические предпосылки, но также и опыт создания других КА, опыт их отработки, результаты проведенных при этом исследований. Однако этого опыта подчас оказывается недостаточно, особенно при проектировании новых аппаратов, существенно отличающихся от предшествующих и по объему и уровню решаемых задач, и по предъявляемым к ним требованиям, выполнение которых далеко не всегда возможно с помощью известных, хорошо отработанных схемных и конструктивных решений. Возникает необходимость в применении новых материалов и конструкций, принципиально новых систем, которые к моменту проектирования данного КА практикой еще не проверены, поэтому не могут считаться надежными. Экспериментальную отработку всех этих конструктивных новшеств необходимо проводить одновременно с разработкой эскизного проекта, а в ряде случаев и со значительным опережением, так как в эскизный проект должны вносится решения в той или иной степени апробированные расчетом или экспериментом. В истории развития ракетно-космической техники немало (особенно на ранней стадии) примеров, когда игнорирование такого подхода приводило к тому, что спроектированный и материализованный КА, после проведенных испытаний приходилось перепроектировать.

На начальном этапе развития ракетно-космической техники основная экспериментальная отработка КА происходила при летно-конструкторских испытаниях (ЛКИ). В наземных условиях автономно отрабатывались только составляющие КА компоненты (системы). При этом для отработки и доводки КА требовалось значительное число пусков. По мере усложнения КА, связанном с расширением и усложнением решаемых с их помощью задач, резко повысилась стоимость самих КА и проведения каждого его пуска, в связи, с чем изменилась стратегия экспериментальной отработки КА, которая сейчас ориентируется на единичные пуски при ЛКИ или на отказ от ЛКИ в случае аппаратов, оснащенных дорогостоящей научной аппаратурой, например телескопами, или аппаратов, предназначенных для исследования дальних планет солнечной системы или космических зондов. Современная стратегия экспериментальной отработки основывается преимущественно на наземной отработке систем и частей КА при максимально полной имитации (в пределах возможностей имитационных средств) штатных условий эксплуатации аппарата. Считается целесообразным все, что можно, должно проверяться в наземных условиях. Примером такого подхода к экспериментальной отработке может служить отработка КА «Аполлон», при создании которого значительная, если не большая часть ассигнований на реализацию программы высадки на Луну была направлена на создание наземной экспериментальной базы. В результате около всех конструктивных недостатков было обнаружено при исследовательских испытаниях,конструктивных недостатков выявили контрольно - технологические (приемочные) испытания и лишьнедостатков выявили предстартовые и летные испытания [1]. Следует при этом отметить, что под исследовательскими испытаниями понимают испытания, проводимые с целью определения возможности создания конструкции и определения способности разрабатываемой конструкции выполнять требуемые функции в течение заданного времени в диапазоне внешних условий, которые могут иметь место в полете или в условиях наземной подготовки к полету. Объектами исследовательских испытаний являются макет опытного образца, опытный образец и промышленный образец. Что касается контрольно - технологических (приемочных) испытаний, то они представляют собой проверку штатного изделия на отсутствие производственных дефектов. Программа этих испытаний включает функциональные испытания и испытания отдельных фрагментов изделия на воздействие эксплуатационных условий перед их монтажом, а также комплексные испытания систем и подсистем после монтажа.

Перечислим основные задачи, которые необходимо решить для достижения цели испытаний сложной технической системы [1].

- Оценка правильности основных конструктивных и схемных решений, положенных в основу проекта КА, корректировка их в процессе отработки.

- Проверка и отработка функционирования агрегатов КА, отдельных конструктивных узлов и приборов в эксплуатационных условиях и отработка их взаимодействия в общей конструктивной схеме.

- Определение летно-технических характеристик КА в полном диапазоне условий его применения.

- Исследование и в процессе отработки устранение причины возможных неисправностей, которые могут привести к срыву программы полета КА или его гибели.

- Отработка технологии эксплуатации КА.

Критерии эффективности экспериментальной отработки

При планировании экспериментальной отработки решается задача поиска оптимального варианта этой отработки. В качестве критериев оптимальности принимаются минимальная стоимость, минимальные сроки и надежность отработки.

Под стоимостью понимают стоимость всех работ, связанных с проведением экспериментов на всех этапах, включая и затраты на проектирование, изготовление и освоение испытательного оборудования.

Минимизация сроков экспериментальной отработки является предпосылкой сокращения сроков создания КА.

Понятие надежности как критерия оптимальности программы отработки включает в себя довольно широкие требования. Это, прежде всего обеспечение заданной безотказности работы всех систем КА в штатных условиях эксплуатации и в некоторых возможных нештатных ситуациях. Это также необходимая достоверность и точность экспериментального получения основных параметров системы, подтверждающих обеспечение достижения цели, поставленной перед создаваемым аппаратом.

Классификация испытаний КА и его составных частей.

Как отмечается в [1] основаниями для классификации могут служить следующие признаки.

1)Назначение испытаний. В этом случае испытания делятся на исследовательские, контрольные, сравнительные и определительные.

Исследовательские (научные) испытания проводятся для изучения определенных характеристик свойств объекта. Эти испытания необходимы для установления качественных и количественных соотношений характеристик для ранее неизвестных ситуаций, для сопоставления и построения новых гипотез, теорий.

Контрольные испытания проводятся для установления соответствия характеристик объекта заданным требованиям.

Сравнительные испытания проводятся для сравнения свойств аналогичных по назначению или одинаковых объектов в идентичных условиях.

Определительные испытания проводятся для определения значений характеристик с заданными значениями показателей точности и достоверности.

2)Уровень объекта испытаний. По этому признаку испытания делятся на следующие виды: испытания материалов и элементов, испытания узлов, приборов, агрегатов, устройств, подсистем, систем, испытания КА в целом.

3)Определяемые характеристики объекта. По этому признаку испытания делятся на функциональные испытания, испытания на прочность, на устойчивость, испытания на надежность, безопасность, транспортабельность, граничные испытания, технологические испытания.

4)Этапы разработки изделия. В этом случае испытания делятся на доводочные, предварительные, приемочные.

Доводочные испытания – это исследовательские испытания, проводимые при разработке изделия с целью оценки влияния изменений, вносимых в него для достижения заданных значений показателей ее качества.

Предварительные испытания – контрольные испытания опытных образцов с целью определения возможности их предъявления на приемочные испытания.

Приемочные испытания – контрольные испытания опытных образцов с целью решения вопроса о возможности допуска изделия к штатной эксплуатации.

5)Условия и место проведения испытаний. Испытания в этом случае делятся на следующие виды: лабораторные, с использованием предметно - математических моделей, стендовые, полигонные, эксплуатационные.

Лабораторные испытания – испытания, проводимые в лабораторных условиях. Очевидно, что объектами испытаний в лабораторных условиях могут быть объекты низших уровней - такие как материалы, элементы, узлы, приборы.

Испытания с использованием моделей основываются на использовании предметно - математических моделей, которые конструируются из элементов иной (по сравнению с оригиналом) физической природы, но описываются такими же математическими моделями, что и оригинал. Предметно - математические модели можно разделить на два вида: модели прямой и непрямой аналогии. Первые строятся на основе непосредственной связи (аналогии) между величинами, присущими физически различным явлениям, но описываемыми одинаковыми математическими моделями. Предметно - математические модели непрямой аналогии представляют собой аналоговые вычислительные машины.

Стендовые испытания – это испытание объекта на испытательном оборудовании, представляющем собой технические устройства, имитирующие физические воздействия, которым подвергается КА в натурных условиях. Испытательное оборудование (испытательные стенды) может объединяться по направлениям и образовывать, например, комплексы механических, тепловых, электрических, климатических, химических, биологических, магнитных, электромагнитных и радиационных испытаний.

Полигонные испытания - испытания объекта, проводимые на испытательном полигоне.

Эксплуатационные испытания – испытания объекта в условиях его штатной эксплуатации.

Кроме перечисленных типов испытаний, классификация которых осуществлялась по их характерным признакам, следует отметить еще следующие виды испытаний, относящиеся к сложным объектам - к КА в целом или его отдельным фрагментам, системам: автономные испытания, комплексные испытания, испытания в условиях имитации нештатных аварийных ситуаций.

Автономным испытаниям подвергаются отдельные составляющие сложной технической системы – в нашем случае отдельные части или системы КА.

Комплексные испытания проводятся либо для группы непосредственно связанных систем КА, либо для всего КА с целью проверки нормального функционирования систем КА после проведения монтажно-сборочных работ.

Лекции N2 и 3

Тема лекций: Факторы космического полета, оказывающие влияние на состояние и работоспособность конструкции, оборудования и приборов КА.

Можно выделить следующие 4 характерных этапа эксплуатации КА, отличающиеся особенностями физических факторов, в различных проявлениях действующих на конструкцию, системы, оборудование и приборы КА: 1) пребывание в земных условиях, включая условия на стартовой позиции; 2) участок выведения КА на траекторию полета; 3) пребывание КА в космосе; 4) торможение и спуск КА или его части (CA) в атмосфере планеты.

Рассмотрим последовательно эти этапы.

Пребывание в земных условиях.

В земных условиях на КА воздействуют климатические факторы. К ним относятся:

- повышенная и пониженная температура окружающей атмосферы, которая может изменяться в пределах от - 65 С до + 75 С;

- повышенная или пониженная влажность окружающей атмосферы;

- атмосферное давление и резкие изменения этого давления (бароудар);

- дождь, град, роса, иней;

- атмосферная пыль и песок.

Следует заметить, что в целом для КА климатические факторы существенны лишь для КА многоразового использования. Для обычных КА, выводимых в космос под обтекателем, на всех стадиях подготовки к запуску, включая и доставку на полигон в монтажно-испытательный корпус, принимаются меры по исключению влияния на них климатических факторов. Климатические испытания могут проводиться лишь для некоторых агрегатов и приборов, исходя из особенностей доставки их к местам установки на изделие.

Участок выведения КА на траекторию полета

На участке выведения КА на элементы конструкции, систем и оборудования КА действуют инерционные нагрузки, обусловленные ускорением. Величины этих нагрузок зависят от величины и направления перегрузок. Перегрузки, возникающие на участке выведения, невелики и не превышают . Однако инерционные нагрузки для отдельных элементов и даже частей конструкции КА могут быть значительно выше из-за вибрации (общие или местные ускорения колебательного характера). Основным источником вибрации являются работающие двигатели – маршевые и двигатели системы ориентации. Вибрации отдельных элементов могут возникать также вследствие пульсации компонентов топлива в трубопроводах. Могут быть и другие причины вибрации. Вибрация может явиться причиной усталостных разрушений элементов конструкции КА, механических повреждений приборов и аппаратуры, нарушения герметичности отсеков КА.

Элементы конструкции КА подвергаются также интенсивному акустическому нагружению. Акустическая нагрузка - это воздействие возникающего при работе ракетных двигателей звукового (акустического) поля на КА. Акустическая энергия, генерируемая реактивной струей ракетного двигателя, характеризуется частотным спектром, силой звука, уровнем звукового давления, продолжительностью воздействия и некоторыми другими параметрами.

На образование акустического поля затрачивается до 1% кинетической энергии струи. Частотный спектр шума работающего двигателя, как правило, широкополосный и гладкий (так называемый белый шум). Однако при некоторых компоновках многосопловых двигательных установок или при взаимодействии реактивных струй с элементами пускового устройства в гладком спектре шума появляются дискретные составляющие – выбросы на отдельных частотах, интенсивности которых иногда в 100 раз и более превосходят уровень интенсивности сплошного спектра. Для объекта наибольшую опасность представляют дискретные составляющие, которые могут приводить к его раскачке и даже разрушению, особенно при совпадении частоты составляющей с собственной частотой конструкции. Наиболее чувствительны к акустическим нагрузкам аппаратура и некоторые элементы системы управления.

При работе двигательной установки шум возникает не только от реактивных струй, но и отвибраций, например, от вибраций сопла и трубопроводов, вызванных воздействием на них колебаний давления в пограничном слое, непосредственных вибраций двигателей из-за несбалансированности вращающихся элементов, работы арматуры и т. д. Однако эти источники вибрации невелики по амплитуде и имеют высокую частоту.

Пребывание в космосе

Кратко охарактеризуем основные факторы космической среды и их проявление в состоянии конструкции, систем, оборудования и приборов КА.

1) Космический вакуум

Основной особенностью космоса как физической среды является чрезвычайная разреженность газообразной материи в нем. Когда давление газа значительно ниже атмосферного, то такое его состояние называется вакуумом. Количественной характеристикой вакуума служит абсолютное давление. В вакуумной технике давление выражается в единицах, называемых “торр”, ”мм. ртутного столба, “Паскаль” (Па). “Торр” соответствует давлению 1 мм. рт. cт. Давление 760 мм. рт.cт. соответствует или., поэтому.

Давление в космосе изменяется в широких пределах в зависимости от рассматриваемого пространства. Согласно астрономическим данным давление газа в межзвездном пространстве (в основном атомарного водорода) составляет приблизительно . Межпланетное пространство заполнено газовыми частицами в основном солнечного происхождения. Эти частицы эжектируются из солнечной короны, образуя потоки плазмы - солнечный ветер, состоящий, главным образом, из ионизированных водорода и гелия. Условия в межпланетном пространстве широко изменяются в зависимости от солнечной активности. Давление в среднем изменяется отдо.

Наибольший практический интерес представляют данные о состоянии разреженного газа в околоземном пространстве. Атмосфера Земли на высотах более 100 км неоднородна как в отношении химического состава, так и по состоянию частиц. Так на высоте 100 км давление газа составляет приблизительно При этом основные компоненты атмосферы -. На высоте 200км давление составляетНа высоте 300 км давление газа не превышает величину, а на высоте 1000 км давление составляет величину порядка.

Важной характеристикой состояния газа, зависящей от его давления, температуры и химического состава и определяющей характер и интенсивность протекания процессов переноса, является средняя длина свободного пробега молекулы (). Оценки, выполненные по известной из курса общей физики формулы Сюзерленда для воздуха при давлениях и температурах, соответствующихи, показали, что в первом случае, а во втором -. Таким образом, придлина свободного пробега молекулы превышает характерные размеры КА. Данное обстоятельство обуславливает способность космического пространства поглощать в неограниченных количествах газы и пары, которые выделяются с поверхности КА. То есть особенностью массопотерь в космосе является то, что мало частиц, улетающих с поверхности КА, возвращаются обратно. Эта особенность характеризуется так называемым коэффициентом возврата, определяемым отношением количества частиц, возвращающихся на КА в единицу времени, к числу частиц, покидающих его за то же время. В [8] отмечается, что при.

Давление газа на различные части КА в космосе не одинаково. На передние (по вектору скорости) части околоземного КА () оно может на два порядка превышать статическое давление в данном месте пространства, а на задние части может быть на несколько порядков ниже. Это является следствием того, что скорость КА может существенно превосходить скорость теплового хаотического движения частиц в космосе. По этой причине для различных частей КА может отличаться и коэффициент возврата.

Наличие упорядоченной скорости движения газовой среды относительно КА приводит к кинетическому нагреву передней части его поверхности за счет взаимодействия с частицами набегающего газового потока. Часть кинетической энергии частиц, пропорциональная термическому коэффициенту аккомодации () передается стенке в виде тепла. Кроме того выделение тепла на стенке происходит и вследствие возможных процессов рекомбинации диссоциированных молекул газа на сравнительно холодной стенке. При свободномолекулярном режиме течения газа плотность теплового потока, подводимого к элементу поверхности КА за счет столкновения с частицами воздуха можно определить с помощью простой формулы: , где- плотность газа, - угол между плоскостью элемента КА и направлением полета, (). Оценки показывают, что при.

Плотность теплового потока, подводимого к поверхности КА при реализации процессов рекомбинации диссоциированных молекул газа, как показывают оценки, приблизительно на порядок меньше .

Таким образом, имеет место неравномерное динамическое и тепловое воздействие разреженной космической газообразной материи на поверхность КА. При этом для околоземных аппаратов непосредственное тепловое воздействие газовых частиц на некоторые поверхности весьма существенно до высот . Этим воздействием можно бесспорно пренебречь лишь при. Но при этом необходимо отметить то, что разреженная газовая материя космоса уже начиная с высот, превышающихне является сколько-нибудь заметной теплопередающей средой. Оценки, проведенные в [9], свидетельствуют о том, что на таких высотах конвективным теплопереносом и теплопроводностью газа можно пренебречь. Следовательно, теплообмен между неконтактирующими друг с другом поверхностями в космосе может осуществляться в основном излучением и в особых случаях за счет таких массообменных процессов как сублимация, испарение, конденсация.

Космический вакуум может вызвать ускоренную сублимацию (испарение) поверхностных слоев материалов КА, приводящую к изменению их поверхностных свойств, в том числе к изменению радиационно-оптических характеристик. При этом для металлов вакуум не представляет особой опасности, исключая металлы с относительно высоким давлением насыщенных паров, такие как и. Так, например, при температуре 120 С лист из кадмия толщиной 2за год может испариться полностью (при двустороннем испарении).

Большинство неметаллических материалов в большой степени подвержены изменениям в вакууме, особенно материалы, имеющие легколетучие компоненты. Изменения усугубляются одновременным (с вакуумом) воздействием жестких электромагнитных излучений и потоков заряженных частиц в основном солнечного происхождения. Особенно опасно испарение в вакууме для материалов, имеющих целевое назначение, например, для покрытий с определенными оптическими свойствами, для смазок трущихся частей (испарение смазки может привести к холодной сварке металлов), для работы оптической аппаратуры (иногда вакуумное испарение покрытия оправы или бленды объектива приводило к его помутнению из-за осаждения продуктов испарения).

В вакууме в результате удаления защитных газовых, а также оксидных пленок может существенно увеличиться коэффициент трения между соприкасающимися поверхностями, а также может измениться коэффициент термической аккомодации . Так коэффициентгелия на чистой поверхности вольфрама на порядок меньшев случае поверхности того же вольфрама, но покрытой адсорбированными молекулами. Очищение поверхности КА от слоя хемисорбированных или физически сорбированных молекул происходит после выхода в космос постепенно под воздействием внешних условий, в том числе под воздействием частиц набегающего потока газа, кинетическая энергия которых превосходит энергию связи адсорбированных атомов и молекул.

Важными являются также следующие явления, обусловленные космическим вакуумом: нагрузки от перепадов давления (внутри КА и снаружи); утечка хранящихся на борту КА газов ; разгон истекающих и стравливаемых газов до предельных скоростей; переохлаждение поверхностей при стравливании криогенных компонентов.

Нагрузка от перепадов давления в космосе довольна значительна. Любое абсолютное давление в замкнутых объемах - баках, в кабине экипажа, и т.д. – является, по сути дела, избыточным. Давление внутренних полостей таким образом нагружает конструкцию, что в итоге выливается в затраты массы.

Утечка газов в вакууме происходит не только из-за мельчайших зазоров в арматуре и уплотнениях, но и непосредственно через стенки заключающих их емкостей. Так, например, гелий, имеющий температуру 600 С и давление 60 (), проникает сквозь стенку трубы из нержавеющей стали в окружающее пространство, где поддерживается давление, при толщине стенки трубысо скоростью. Заметим, что- нормальный литр, т.е. 1газа при нормальных условиях. Утечка водорода при тех же условиях больше примерно враз, а утечка азота приблизительно в три раза меньше, чем у водорода. Такое сравнение еще не означает, что гелий сохраняется лучше, чем другие газы. Дело в том, что атомы гелия имеют очень маленький относительный размер и вследствие этого гелий интенсивно вытекает через малейшие щели. У водорода размер молекул больше, он не так интенсивно вытекает через щели, но очень сильно диффундирует через стенки из-за своей химической активности. Истекающие в вакуум газы разгоняются до больших скоростей, поэтому порождают довольно значительные возмущающие силы, которые необходимо компенсировать средствами ориентации.

Переохлаждение конструкции при стравливании криогенных жидких компонентов, особенно переохлаждение стравливающих штуцеров и пористых поверхностей, происходит по двум причинам: во - первых, из-за отбора от этих элементов теплоты испарения, во - вторых, из-за расширения потока стравливаемого газа. Это расширение иногда сопровождается настолько интенсивным отбором тепла, что в потоке могут образоваться центры кристаллизации паров стравливаемого компонента.

Вакуум может вызвать возникновение токов утечки, разрядов, пробоев, а также других нежелательных электрофизических явлений при эксплуатации электронного и электротехнического оборудования КА. Продукты испарения могут попадать на относительно более холодные участки неизолированных электрических цепей и вызвать появление токов утечки, тем самым нарушая режим работы электронных схем.

2) Радиационные свойства космического пространства

Характерной особенностью космоса является практическое отсутствие излучения по всем направлениям, находящимся за пределами телесных углов обзора Солнца и планет. По оценкам плотность потока падающего из космоса излучения на элемент поверхности, который в силу своей ориентации не подвергается воздействию излучения, исходящего от Солнца и планет, составляет величину, приблизительно равную . Такая плотность потока излучения свойственна абсолютно черному телу с температурой. Поэтому при характеристике космического пространства употребляют термин “холодный” космос.

В условиях космоса излучение, испускаемое поверхностью КА, назад практически не возвращается, даже если это излучение испускается в сторону находящейся вблизи планеты. То есть космическое пространство можно считать идеальным поглотителем, поэтому говорят о “черноте” космического пространства.

3) Невесомость.

Невесомость – состояние материального тела, при котором действующие на него внешние силы не вызывают взаимных давлений частиц друг на друга [11]. Невесомость возникает при свободном движении тел в поле только одних гравитационных сил.

Состояние невесомости порождает ряд проблем физического и биологического характера. Так одной из физических проблем, появившейся при организации космических полетов, - проблема работоспособности и, в частности, запуска двигательных установок, работающих на жидких, а особенно на криогенных компонентах. Дело в том, что в невесомости компоненты жидкого топлива могут занимать произвольное положение относительно заборника, а необходимым условием запуска двигателя является наличие сплошности жидкого компонента на входе в двигатель. Подобная проблема возникает в связи с необходимостью разделения жидкой и газовой фаз в ряде агрегатов системы жизнеобеспечения и в топливных элементах.

Переход в невесомость сопровождается изменением условий и механизма теплообмена с участием жидкости и газа как теплопередающей среды. Не рассматривая всех аспектов влияния невесомости на физические процессы, протекающие в заполненных газом и жидкостью отсеках и устройствах КА (влияние на гидродинамику и гидростатику теплоносителей, на процессы конденсации и испарения), коснемся лишь самого важного вопроса, связанного с отсутствием естественной (гравитационной) конвекции в условиях космического полета, в то время как в наземных условиях гравитационная конвекция чаще всего имеет место и играет значительную роль в передаче энергии через газовую или жидкостную среду и, следовательно, в формировании теплового режима элементов объема или отсека, заполненного газом или жидкостью. Важность вопроса обусловлена тем, что результаты наземных экспериментальных исследований теплового режима КА из-за влияния естественной конвекции могут в ряде случаев существенно отличаться от того теплового режима, который будет иметь место в штатных условиях эксплуатации.

Большая группа проблем, возникающих при невесомости, касается ее биологического воздействия на живые организмы и прежде всего на человека. В невесомости центральная нервная система человека и рецепторы многих анализаторных систем (вестибулярного аппарата, мышечной системы, кровеносных сосудов и др.) находятся в необычных условиях функционирования. Поэтому невесомость рассматривают как специфический раздражитель, действующий на организм человека в течение всего космического полета.

4) Электромагнитное и корпускулярное излучение Солнца.

Начало формы

Считается, что основным источником солнечной энергии служит так называемая протон - протонная ядерная реакция, при которой из 4-х атомов водорода образуется один атом гелия. Ядерные реакции совершаются в центральной сверхплотной и сильно нагретой (приблизительно ) части Солнца, простирающейся от центра доего радиуса. В этой зоне электромагнитное излучение зарождается в форме- квантов высоких энергий. Этикванты поглощаются атомами той части газа, которая расположена ближе к поверхности и где ядерные реакции из-за более низких температур и давлений невозможны. По мере перемещения к поверхности в результате многократного повторения процессов поглощения и излучения происходит трансформация- квантов в кванты рентгеновского, ультрафиолетового, видимого и инфракрасного излучения. Считается, что это происходит в так называемой зоне лучистого равновесия (). От поверхности Солнца до зоны лучистого равновесия простирается конвективная зона, в которой энергия переносится конвекцией. Видимая поверхность Солнца, называемая фотосферой, испускает практически всю приходящую к нам энергию электромагнитного излучения Солнца. Плотность потока исходящего от фотосферы излучения составляет приблизительно, что соответствует радиационной температуре.

Над фотосферой расположена солнечная атмосфера, внешняя часть которой, называемая короной, состоит из чрезвычайно разреженной плазмы с температурой, близкой к миллиону градусов. Хотя общее излучение короны приблизительно в миллион раз меньше общего излучения Солнца [11], однако она является источником интенсивного жесткого ультрафиолетового и рентгеновского излучения. Излучение фотосферы и атмосферы изменяется во времени из-за так называемой солнечной активности.

На орбите Земли плотность потока излучения Солнца, падающего на площадку, перпендикулярную направлению на Солнце (солнечная постоянная ) изменяется из-за эллиптичности земной орбиты в пределах от 1350 до 1440. Угловой диаметр наблюдаемого с Земли Солнца составляет приблизительно.

Зависимость спектральной интенсивности () или спектральной плотности () электромагнитного излучения Солнца от длины волны излучения () имеет весьма сложный и изменчивый характер, зависящий от комплекса различных явлений в фотосфере и атмосфере Солнца. На рисунке 1 в виде графика представлена зависимость относительной величины спектральной плотности потока излучения Солнца от. Абсолютные текущие значенияотносились к максимальному значению этой величины, имеющему место при. На этом же рисунке в виде пунктирной кривой 2 изображена аналогичная зависимость для абсолютно черного тела с температурой, равной радиационной температуре Солнца. Для второй кривой масштаб зависимости относительной величиныпо оси ординат выбран исходя из условия равенства интегралов подля первой и второй кривой. Сопоставляя кривые 1 и 2 можно заключить, что видимая (0,38 - 0,75)и инфракрасная части спектров Солнца и абсолютно черного тела отличаются мало.

Вультрафиолетовой области спектра наблюдаются существенные отличия. Несмотря на то, что большая часть энергии электромагнитного излучения Солнца сосредоточена в длинноволновой части спектра (), коротковолновая его часть () заслуживает особого внимания, т.к. коротковолновая радиация (ультрафиолетовое и рентгеновское излучение) является одной из причин, вызывающих деградацию наружных покрытий КА и, следовательно, изменение их радиационно-оптических свойств.

Следует заметить, что солнечная активность практически не изменяет ту область спектра, которая расположена правее . Существенно изменяется во время солнечных вспышек спектр рентгеновского излучения. Излучение становится жестче, плотность фотонов свозрастает на два порядка. Общая интенсивность излучения свозрастает более чем в два раза.

Помимо электромагнитного излучения Солнце постоянно испускает потоки заряженных частиц, представляющих собой главным образом ионы водорода, гелия, электроны. Эти потоки называются “солнечным ветром”. В результате взаимодействия этих частиц с геомагнитным полем возникает ударная волна. За ударной волной происходит захват заряженных частиц “солнечного ветра” магнитным полем Земли, что приводит к образованию зон захваченной радиации.

Поток солнечного излучения, падающий на поверхность КА и поглощаемый ею в той или иной степени в зависимости от величины коэффициента - поглощательной способности, может оказывать на эту поверхность двойственное воздействие: непосредственное тепловое и косвенное, проявляющееся со временем в виде возможного изменения радиационно-оптических характеристик поверхности. Изменение этих характеристик является результатом так называемых радиационных повреждений материалов, которые происходят в основном вследствие ионизации, электронных возбуждений, смещения атомов вещества, диссоциации химических связей в молекулах при поглощении фотонов больших энергий и взаимодействии с высокоэнергетическими заряженными частицами солнечного и галактического происхождения.

5) Исходящее от планет излучение

Исходящее от планет электромагнитное (тепловое) излучение можно условно разделить на две составляющие: отраженное солнечное излучение и собственное инфракрасное излучение, источником которого для планет земного типа в основном является поглощенная солнечная радиация.

Плотность, угловое распределение интенсивности и спектральный состав отраженного от планет солнечного излучения зависит от многих факторов: состава и физических характеристик атмосферы планеты, если она имеется, характера подстилающей поверхности и особенностей ее макрорельефа, от зенитного угла Солнца. Процесс отражения весьма сложен, особенно при наличии у планеты атмосферы. Так отраженное излучение Земли формируется в результате многократного обратного рассеивания на молекулах воздуха, каплях воды в облаках и частицах аэрозоля, а также за счет отражения от твердых и водных поверхностей. Для характеристики отражательной способности планеты в целом, отдельных участков ее поверхности, а в ряде случаев и отдельных компонент отражающей системы используется понятие альбедо, характеризующее долю отраженной радиации по отношению к падающей на данную поверхность. Когда речь идет об отражательной способности планеты в целом, то говорят о сферическом (глобальном) альбедо (). Отражательная способность участка поверхности планеты характеризуется локальным альбедо ().

Спектр отраженного от планет солнечного излучения в той или иной степени трансформируется в результате селективного поглощения излучения атмосферой планеты, если она имеется, и взаимодействия излучения с подстилающей поверхностью, которая является, как правило, не серой.

Индикатриса отражения, т.е. функция, характеризующая зависимость относительной величины интенсивности или направленной силы отраженного излучения от направления при различных значениях зенитного угла Солнца весьма изменчива и по времени и по географическим координатам. Но в целом, как свидетельствуют расчеты и наблюдения, эту индикатрису с удовлетворительной точностью можно считать диффузной.

Механизм формирования уходящего от планет собственного излучения чрезвычайно сложен (особенно для Земли) и определяется процессами поглощения, испускания, отражения и рассеивания излучения, но и особенностям протекания процессов сложного теплообмена (лучистого, конвективного и кондуктивного - в совокупности) в макросистемах, включающих в себя элементы подстилающей поверхности и атмосферы, если она имеется. Значительная неопределенность, изменчивость локальных по координатам и времени излучательных характеристик системы подстилающая поверхность – атмосфера побуждает использовать при расчете и экспериментальном моделировании внешнего теплообмена КА упрощенную модель собственного инфракрасного излучения Земли в космос. Модель, основанную на осреднении по поверхности и по времени радиационно-оптических характеристик элементов излучающей системы. Осреднение основано на допущении о равенстве нулю теплового баланса планеты. Предполагается, что поглощенная Землей или Венерой солнечная радиация полностью переизлучается затем в инфракрасной

области спектра некоторой равномерно нагретой в соответствии с поглощенной энергией эффективной сферической поверхностью, являющейся внешней границей оптически активного слоя атмосферы. В соответствии с этим предположением полусферическая поверхностная плотность потока собственного излучения Земли и Венеры определяется следующим простым соотношением [7]:. Если, например, для Земли принять, то, что соответствует радиационной температуре поверхности. В рамках такой модели предполагается диффузный характер излучения, то есть независимость в пределах полусферического телесного угла интенсивности собственного излучения Земли от направления. Спектральное распределение энергии собственного излучения нашей планеты, как впрочем и других планет и астероидов солнечной системы, принимается таким же, как у абсолютно черного тела с температурой равной радиационной температуре планеты.

6) Микрометеорные потоки и собственные выделения КА

В космическом пространстве движется большое количество метеоров - твердых тел от нескольких десятков километров до десятых долей микрометра в поперечнике. Число метеорных тел тем больше, чем меньше их масса (примерно обратно пропорционально). Метеоры делятся на два класса: метеорные потоки (рои) и спорадические метеоры, не принадлежащие к метеорным потокам. Орбиты и параметры движения некоторых метеорных роев солнечной системы известны. Встреча с ними может прогнозироваться. Со спорадическими потоками встречи случайны. Повреждение конструкции, например пробой оболочки гермоконтейнера, может происходить при столкновении с метеорами массой. Установлено, что вероятность столкновения с такими метеорами, если они относятся к классу спорадических, мала. Вероятность пробоя при попадании в метеорный рой возрастает на порядок или даже на несколько порядков [4]. Частицы массой менее(метеорная пыль) не представляют непосредственной опасности для жизненно важных узлов КА, но они вызывают поверхностную эрозию материалов, причем наиболее интенсивная эрозия возникает при взаимодействии с частицами массой, поток которых достаточно велик. В результате эрозии полированные и зеркальные поверхности мутнеют, приобретая частично диффузные свойства, отражательная способность их снижается, оптические материалы также мутнеют, уменьшается их пропускательная способность.

В ряде случаев важным фактором, влияющим на характеристики терморегулирующих покрытий и оптики, являются собственные выделения КА в результате вакуумирования, гашения его конструктивных элементов, выброса продуктов горения из реактивных управляющих двигателей, выбросов рабочих веществ различных клапанов бортовых систем, испарительных теплообменников и т.п. Данный фактор проявляется в условиях низкого давления окружающей среды и приводит к так называемому загрязнению поверхностей КА. Выделяемые КА газообразные вещества, рассеиваясь в окружающем пространстве, могут сталкиваться друг с другом и частицами газа окружающей среды и вновь попадать на поверхности КА и осаждаться на них. Осаждение наиболее вероятно на холодных поверхностях, особенно на тех, которые имеют криогенные температуры. Влияние загрязнения поверхностей усугубляется одновременным воздействием жесткого электромагнитного и ультрафиолетового воздействия. Под воздействием этого излучения, а также под воздействием заряженных частиц солнечного происхождения в осевших продуктах происходят химические реакции, которые препятствуют испарению осевших частиц и приводят к изменению радиационно-оптических свойств поверхностей КА.

Торможение и спуск КА или его части (CA) в атмосфере планет.

КА входит в атмосферу с большой начальной скоростью. Аэродинамические силы сопротивления при снижении замедляют КА, и его скорость уменьшается до малого (дозвукового) значения. В зависимости от тормозящих свойств атмосферы на процесс торможения влияют те или иные характеристики КА, основные из которых являются аэродинамическое качество и нагрузка на лобовую поверхность, т.е. масса КА, отнесенная к площади его миделя. При спуске в атмосфере Земли нагрузка на лобовую поверхность несущественна, т.к. даже КА с нулевым аэродинамическим качеством и с большой нагрузкой на лобовую поверхность тормозятся до малых дозвуковых скоростей. В разреженной атмосфере Марса со слабыми тормозящими свойствами только аппараты со сравнительно небольшими нагрузками на мидель в состоянии погасить начальную скорость до дозвуковых скоростей. Интенсивность торможения атмосферой ограничивается допустимыми перегрузками для экипажа, приборов или конструкции КА.

Характер траектории спуска в атмосфере в основном определяется аэродинамическими характеристиками КА, а также начальными условиями движения и параметрами атмосферы. Если КА не обладает подъемной силой, то он осуществляет баллистический спуск. Вид баллистической траектории целиком определяется начальными условиями входа в плотную атмосферу и прежде всего углом входа. Баллистический спуск связан с большими перегрузками. Такой спуск применялся при первых полета человека в космос. Если СА обладает даже малым аэродинамическим качеством (), то для него характерно существенное уменьшение перегрузок по сравнению с баллистическим спуском. Аэродинамическое качество может быть использовано и при формировании характера распределения по времени внешней тепловой нагрузки на поверхность СА, что открывает принципиальную возможность осуществления минимизации массы тепловой защиты. Возможен и планирующий спуск, характерной особенностью которого является управление траекторией движения путем использования аэродинамической подъемной силы.

Независимо от того, какой способ спуска реализуется при входе СА в плотные слои атмосферы, перед ним образуется ударная волна, которая отходит от его поверхности, оставаясь в окрестности лобовой точки практически эквидистантной его поверхности. Набегающий на СА поток газа, проходя через фронт ударной волны замедляется и резко меняет свои параметры: давление, плотность, температуру, химический состав. Температура газа, его плотность возрастают в десятки раз по сравнению с температурой и плотностью невозмущенного газового потока. А давление увеличивается с сотни раз [12].

С физической точки зрения мгновенное скачкообразное изменение параметров при переходе через ударную волну следует рассматривать только как идеализированную схему быстропротекающего процесса непрерывного изменения состояния. Почти вся кинетическая энергия КА при торможении расходуется на нагрев воздуха за ударной волной и лишь небольшая часть (не превышающая 1%) в виде тепловой энергии затрачивается на нагрев и унос теплозащиты. Плотность тепловых потоков, поступающих к поверхности КА, зависит от траектории спуска. При крутых траекториях подводятся потоки большой плотности. На пологих траекториях, характерных для планирующего спуска, плотности тепловых потоков меньше, хотя суммарная тепловая энергия, подводимая к поверхности КА возрастает вследствие увеличения времени спуска.

Лекция N4

Тема лекции: Статические и вибрационные испытания

В процессе эксплуатации (на стартовой позиции, на участке выведения, в условиях космического полета, при спуске в атмосфере Земли или при посадке на другие планеты) КА подвергается воздействию внешних механических нагрузок. Если рассматривать воздействие внешних силовых нагрузок с точки зрения влияния их на напряженно - деформированное состояние частей конструкции КА и на значения соответствующих внутренних усилий, определяющих силовое воздействие частей конструкции между собой, то по характеру распределения все нагрузки могут быть разделены на поверхностные и объемные (массовые) [1]. Поверхностные нагрузки распределяются на поверхности элементов конструкции и характеризуются давлением или значением равнодействующей силы. Массовые нагрузки распределяются по объему элементов конструкции и пропорциональны плотности их материала. Значения массовых нагрузок характеризуются коэффициентом перегрузки. Основным источником массовых (инерционных) нагрузок для отдельных элементов и даже частей конструкции КА является вибрация (общие или местные ускорения колебательного характера).

Все внешние поверхностные нагрузки подразделяются на квазистатические, медленно изменяющиеся по времени и называемые статическими, и на динамические, вызывающие упругие колебания конструкции КА. Эффект динамического действия внешних поверхностных сил (проявляющийся в возбуждении упругих колебаний) зависит в основном от динамических характеристик самого аппарата. Поэтому обычно в качестве критерия указанной классификации внешних нагрузок выбирают период (или частоту) свободных упругих колебаний конструкции в целом или ее частей и элементов. Если время изменения внешних поверхностных нагрузок велико по сравнению с периодом свободных упругих колебаний рассматриваемой конструкции, то эти нагрузки считаются статическими или квазистатическими. Если же время изменения внешних поверхностных нагрузок мало по сравнению с периодом свободных упругих колебаний – нагрузки относят к категории динамических. Таким образом, одна и та же внешняя нагрузка для одних конструкций может считаться квазистатической, а для других – динамической.

Статические испытания

Известные способы воспроизведения поверхностных нагрузок при статических испытаниях в большинстве случаев основаны на замене распределенных сил, действующих на конструкцию в натурных условиях, системой элементарных сосредоточенных сил. Такие силы передаются на оболочки испытываемой конструкции при помощи парусиновых лямок с использованием рычажных систем, каждая из которых может объединять десятки элементарных сосредоточенных сил [1,5]. Усилия на рычажные системы передаются от так называемых нагружателей Бывают грузовые, винтовые нагружатели, а также нагружатели на пневмо- или гидроцилиндрах. В тех случаях, когда объектом испытаний на одновременное воздействие силовых и тепловых нагрузок являются элементы тепловой защиты КА, применяю вакуумные системы – так называемые вакуумные присоски, которые позволяют создать на поверхности конструкции распределенные нагрузки, или силовые системы с наддувом – резиновые мешки.

Вибрационные испытания

Вибрация КА – колебательные движения отдельных элементов его конструкции. Основным источником вибрации являются работающие двигатели – маршевые и двигатели системы ориентации. Вибрации отдельных элементов могут возникать также вследствие пульсации компонентов топлива в трубопроводах. Могут быть и другие причины вибрации. Вибрация может явиться причиной усталостных разрушений элементов конструкции КА, механических повреждений приборов и аппаратуры, нарушения герметичности отсеков КА.

Цель и задачи вибрационных испытаний

Целью вибрационных испытаний является оценка работоспособности КА при вибрационных нагрузках.

Основными задачами испытаний являются [1]:

- Проверка прочности конструкции КА при экспериментально выявленных или расчетных вибрационных нагрузках, определение фактических запасов прочности.

- Определение коэффициентов динамичности в узлах крепления комплектующих агрегатов.

- Определение собственных частот и форм колебаний отдельных элементов конструкции и КА в целом.

- Определение коэффициентов демпфирования отдельных агрегатов и КА в целом.

- Оценка работоспособности комплектующих агрегатов, включая функционирующие агрегаты и кинематические узлы, после воздействия вибрационных нагрузок.

- Проверка виброустойчивости комплектующих агрегатов.

- Определение и оценка характеристик КА в процессе и после воздействия вибрационных ускорений, а также при динамических возмущениях, создаваемых функционированием бортовой аппаратуры.

- Определение характеристик КА при имитации условий транспортировки.

При виброиспытаниях требуется обеспечить:

- диапазон частот вибрации в контрольных точках испытываемого объекта (низшие - 0 - 2 Гц, высокие - 500 - 2000 Гц);

- необходимую продолжительность испытаний, которая ограничивается испытательным ресурсом изделия (от нескольких десятков секунд до нескольких часов);

- настройку системы на заданный режим в установленное время (5 – 30 c);

- точность воспроизведения и поддержания заданных спектральных характеристик в ходе испытаний.

В ходе испытаний за короткое время необходимо воспроизвести заданные спектральные характеристики вибраций в широком диапазоне частот и с достаточно высокой точностью. Решение этой задачи для одномерных и в особенности для многомерных систем невозможно без применения автоматизированных систем управления виброиспытаниями.

Требования к испытуемому объекту.

К испытуемому изделию предъявляется ряд требований:

- изделие изготавливается по рабочим чертежам КА, с которым оно должно быть идентично геометрически, механически, электрически и т.д.;

- масса, центровка и моменты инерции изделия должны определяться экспериментально перед испытаниями для каждого конкретного КА;

- замена отдельных элементов изделия массогабаритными макетами допустима лишь в том случае, если это не окажет влияния на прочность и работоспособность конструкции;

- в необходимых случаях следует обеспечить герметичность испытуемых изделий;

- аппаратура испытуемого изделия проверяется на автономное и комплексное функционирование с измерением основных параметров;

- комплектующие элементы и рабочие вещества, используемые в механизмах и агрегатах КА, должны точно соответствовать чертежам, необоснованные замены на стадии испытаний не допускаются;

- специальные узлы, устанавливаемые на изделии для его крепления или приложения нагрузки, не должны изменять прочность и жесткость конструкции, не должны препятствовать ее деформациям при испытаниях;

- на изделии устанавливаются преобразователи, необходимые для фиксирования параметров.

Теоретически возможно проводить испытания всей конструкции КА, однако в большинстве случаев испытания проводятся на отдельных частях и агрегатах изделия. Это обусловлено в основном тремя следующими причинами: 1) Для разных частей и агрегатов КА расчетными являются различные случаи нагружения. Поэтому, проводя отдельные испытания частей и агрегатов (поагрегатные испытания), можно проверить прочность при расчетных режимах нагружения большинства частей и агрегатов конструкции КА, используя один экземпляр изделия. 2) Испытания аппарата в целом сопряжено с большими техническими трудностями. 3) Повторный эксперимент с аппаратом может и не дать достоверной информации о его прочности и жесткости из-за остаточных деформаций, возникающих при первом эксперименте.

Испытания агрегата можно проводить как в системе аппарата, так и автономно. В последнем случае агрегаты должны поставляться на испытания вместе с переходниками, которые призваны имитировать заменяемую ими конструкцию.

Cредства проведения наземных вибрационных испытаний.

Вибрационные испытания КА и их отдельных фрагментов осуществляется с помощью специального оборудования. В состав этого оборудования входят:

- стенды, имитирующие механические воздействия;

- приспособления для крепления КА или его элементов к испытательным установкам;

- приборы для измерения параметров вибрации.

Вибростенды можно классифицировать по назначению, исполнению, типу и направлению создаваемых колебаний, числу компонент и форме колебаний, принципу работы возбудителя, динамической схеме и принципу возбуждения переменной силы в возбудителе колебаний.

Если классифицировать вибростенды по принципу возбуждения переменной силы в возбудителе колебаний (по виду энергетического привода), то можно выделить следующие типы вибростендов: механические, электрогидравлические, пьезоэлектрические, электромагнитные, резонансные, пневматические, магнитострикционные, электродинамические.

Механические вибростенды - обычно выполняются с вибровозбудителями следующего типа: центробежными, эксцентриковыми, кривошипно-шатунными, кулисными и маятниковыми. На рис. 1 изображена заимствованная из [1]cхема механического вибростенда с эксцентриковым вибровозбудителем. На этом рисунке- возбудитель с эксцентриковым приводом; - возбудитель с упругими элементами реактивной массы.

Стенд с эксцентриковым возбудителем подкупает своей простотой, но из-за сильной изнашиваемости подшипников стенды, выполненные по такой схеме применяются для частот, не превышающих 50 - 60.

Амплитуда вибрации регулируется изменением эксцентриситета, частоту – изменением частоты вращения двигателя. Основным преимуществом таких стендов является возможность получения очень низких частот, независимость амплитуды от частоты и экономичность. Недостатком является невозможность получения высоких частот и малых амплитуд (менее 0,1 ) Для разгрузки подшипников применяются

Рис.1

эксцентриковые стенды, включающие упругие элементы и реактивную массу (см. ). Реактивная масса 2 служит для управления вибрационными силами, действующими на основание. Пружины 1 являются основными. Через упругий элемент 5 осуществляется передача колебаний от эксцентрика 6 к платформе 3. Пружины 4 служат для связи элементов вибростенда с основанием. Изменением длины рабочих пружин регулируется амплитуда вибрации платформы.Основное преимущество механических вибростендов заключается в том, что они обеспечивают с определенной точностью постоянство амплитуды вибрации при частотах доГц. Грузоподъемность промышленных стендов может достигать значений до 1000. Все механические стенды - низкочастотные. Частота ограничена прочностью звеньев передаточного механизма. Дело в том, что многозвенный механизм таких стендов имеет большое количество резонансных частот, оказывающих влияние на режим испытания объектов.

Электрогидравлические вибростенды

Можно отметить следующие характерные особенности электрогидравлических вибростендов: возможность создания больших переменных сил (свыше ) и проведения испытаний при частотах до 100, а в отдельных случаях – при частотах до 500; возможность получения больших амплитуд перемещения при испытаниях на низких частотах.

В зависимости от типа задающего механизма различают стенды:

- с гидромеханическим возбуждением;

- с гидроэлектромагнитным возбуждением;

- cгидроэлектродинамическим возбуждением.

Наиболее совершенными являются стенды с гидроэлектродинамическим возбуждением вибрации, в которых электродинамический возбудитель приводит в движение золотник или клапан системы управления, изменяющий давление в основной гидравлической системе. Однако воздействие сложных динамических процессов в жидкости затрудняет получение заданного закона колебаний. Многоступенчатое усиление позволяет получить на столе стенда силы до . Верхний предел частотного диапазона ограничивается динамическими свойствами жидкости и составляет 200 – 300.

Пьезоэлектрические вибростенды

Стенды с пьезоэлектрическим возбуждением вибрации предназначены в основном для испытания точных приборов, когда необходимая частота вибрации может превышать 10 , амплитуда перемещения составляет доли микрометра, а величина возбуждающей колебания силы не превышает единиц ньютона. Работа таких стендов основана на способности пьезокристалла испытывать деформацию под действием приложенного к нему электрического напряжения. Изменение направления вектора напряженности внешнего электрического поля на противоположное меняет деформацию сжатия на деформацию растяжения или наоборот. Если напряженность электрического поля будет меняться по синусоидальному закону, то и деформация также будет происходить по синусоидальному закону. Частотный диапазон таких стендов составляет 1 - 20.

Электромагнитные вибростенды.

Работа такого стенда основана на взаимодействии электромагнита, установленного на упругом основании, с подвижной системой стенда, которая состоит из стола с испытуемым изделием и упругих элементов, позволяющих осуществлять настройку на резонанс путем изменения их длины.

Вибростенды с электромагнитным возбуждением имеют следующие особенности:

- испытания проводятся на фиксированных частотах 50 и 100 , но в отдельных конструкциях стендов возможны испытания с переменными частотами от 15 до 500;

- возможна реализация значительных по величине вынуждающих сил (до );

- возможно проведение испытаний на резонансных режимах с переналадкой механической части стенда;

- практически отсутствуют магнитные поля в зоне размещения испытуемого объекта;

- конструкция стенда и система управления относительно просты.

Пневматические вибростенды- используют энергию сжатого воздуха от промышленных пневмосистем с давлением. В зависимости от реализованной в конструкции стенда принципиальной схемы вибровозбудителя возможно получение частот в диапазоне от 15до 800при широком диапазоне изменения амплитуд и сил.

Резонансные (камертонные) вибростенды- используются для получения высоких значений ускорений. Резонансные возбудители колебаний представляют собой балки или камертоны, колебания которых с резонансной частотой поддерживаются специальным электромагнитным устройством. Каждый из камертонов имеет собственные частоты. Одинаковые испытываемые объекты симметрично крепятся на концах ветвей камертона, которые помещаются в магнитное поле торцевой системы возбуждения.

Электродинамические вибростенды- применяются в тех случаях, когда при вибрационных испытаниях необходимо обеспечить следующие условия:

  • большие амплитуды вынуждающей силы;

  • широкий частотный диапазон;

  • воспроизведение вибрации различного типа (гармонической, случайной, по заданной программе);

  • строгую направленность создаваемой вибрации;

  • возможность изменения направления вибрации;

  • слабые магнитные поля в зоне испытаний;

  • малый коэффициент нелинейных искажений.

Типовая схема электродинамического вибрационного стенда представлена на рис. 2.

Рис.2

Принцип работы электродинамического возбудителя колебаний прост и заключается в следующем: В корпусе электромагнита 3 помещается бескаркасная катушка подмагничивания 2. Корпус электромагнита 3 и кольцо 7 составляют магнитопровод вибратора. Через катушку подмагничивания пропускается постоянный ток. Соосно с неподвижно расположенным электромагнитом, запитываемым постоянным током, располагается подвижная катушка 8, запитываемая переменным током от задающего генератора. Подвижная катушка связана со штоком 6, проходящим через центральную полую часть неподвижного электромагнита. На противоположном по отношению к подвижной катушке конце штока размещается стол 5 с испытуемым объектом 4. В результате взаимодействия постоянного и переменного магнитных полей возникает переменная сила, заставляющая всю подвижную систему (подвижная катушка, шток, стол, объект) совершать колебания в соответствии с направлением этой силы. Если по обмотке подвижной катушки пропускать синусоидальный ток, то колебания стола вибратора будут иметь синусоидальную форму. Частота колебаний стола определяется частотой тока в подвижной катушке.

Лекция N5

Тема лекции: Испытания на воздействие инерционных и ударных нагрузок

Инерционные нагрузки на элементы конструкции и систем КА возникают при движении КА с ускорением. Величины инерционных нагрузок зависят от величины и направления перегрузок. Перегрузки возникают при выведении КА на траекторию полета, при маневрировании, торможении и при посадке на Землю или другие небесные тела. Перегрузки, возникающие на участке выведения, невелики и не превышают . Однако при баллистическом торможении КА в плотных слоях атмосферы, особенно в тех случаях, когда угол входа КА в атмосферу больше, перегрузки резко возрастают и могут достигать.

При испытаниях КА и их систем инерционные нагрузки моделируют таким образом, чтобы они достаточно точно соответствовали нагрузкам в условиях штатной эксплуатации КА. Однако полностью воссоздать условия эксплуатации КА на стендовом оборудовании практически невозможно, хотя бы из-за воздействия на испытуемый объект гравитационных сил, направление действия которых чаще всего не соответствует направлению действия создаваемой в стендовых условиях перегрузки.

Поэтому речь может идти только о большей или меньшей степени приближения к реальным условиям.

В качестве основных средств испытаний используются центробежные стенды. Для достижения условий нагружения, максимально приближающихся к эксплуатационным, на центробежных стендах используются следующие способы: 1) изменение частоты вращения динамической установки с исследуемым объектом; 2) поворот исследуемого объекта на динамической установке; 3) линейное перемещение объекта вдоль одной или нескольких пространственных осей на динамической установке.

На приведенном ниже рисунке 1 изображена схема центробежного стенда.

Рис.1Основными конструктивными элементами центробежного стенда являются электродвигатель, редуктор 1, ротор 2, планшайба 3, каретка 4, платформа 5, испытуемый объект 6. Вращение вала двигателя через редуктор передается на ротор, на котором установлена планшайба. Планшайба вращается вокруг вертикальной оси. Каретка может перемещаться вдоль планшайбы. Платформа, имеет сферическую опору с кареткой, позволяющую ей вращаться относительно произвольной оси, проходящей через центр опоры. Благодаря этому испытуемый объект, установленный на платформе, может вращаться и вокруг своей продольной оси.

Для имитации инерционных нагрузок на центробежном стенде необходимо знать закон изменения во времени перегрузки, воздействующей на КА при эксплуатации.

При воспроизведении линейных ускорений на центробежном стенде определяющее значение имеет величина перегрузки , градиент перегрузки, предельный импульс перегрузкии мера интегрального воздействия.

В процессе испытаний КА и их элементов на центробежных стендах воспроизводятся три основных вида перегрузок:

- импульсные;

- сложные непрерывные периодические;

- непериодические ортогональные.

Испытания на воздействие ударных нагрузок

Основные характеристики ударного процесса и возможные последствия воздействия удара на конструкцию и состояние КА.

Ударом называют механическое воздействие материальных тел, приводящее к конечному изменению скоростей их точек за бесконечно малый промежуток времени. Ударное движение - движение, возникающее в результате однократного взаимодействия тела (среды) с рассматриваемой системой при условии, что наименьший период собственных колебаний системы или ее постоянная времени соизмеримы или больше времени взаимодействия.

При ударном взаимодействии в рассматриваемых точках определяют ударные ускорения, скорость или перемещение. В совокупности такие воздействия и реакции называют ударными процессами. Механические удары могут быть одиночными, многократными и комплексными. Одиночные и многократные ударные процессы могут воздействовать на аппарат в продольном, поперечном и любом промежуточном направлениях. Комплексные ударные нагрузки оказывают воздействие на объект в двух или трех взаимно перпендикулярных плоскостях одновременно. Ударные нагрузки на КА могут быть как непериодическими, так и периодическими. Возникновение ударных нагрузок связано с резким изменением ускорения, скорости или направления перемещения КА. Наиболее часто в реальных условиях встречается сложный одиночный ударный процесс, представляющий собой сочетание простого ударного импульса с наложенными колебаниями.

К основным характеристикам ударного процесса относятся:

- законы изменения во времени ударного ускорения , скоростии перемещения;

- длительность действия ударного ускорения - величина интервала времени () от момента появления до момента исчезновения ударного ускорения;

- длительность фронта ударного ускорения - интервала времени от момента появления ударного ускорения до момента, соответствующего его пиковому значению;

- коэффициент наложенных колебаний ударного ускорения - отношение полной суммы абсолютных значений приращений между смежными и экстремальными значениями ударного ускорения к его удвоенному пиковому значению;

- импульс ударного ускорения - интеграл от ударного ускорения за время, равное длительности его действия.

По форме кривой функциональной зависимости параметров движения ударные процессы разделяются на простые и сложные. Простые процессы не содержат высокочастотных составляющих и их характеристики аппроксимируются простыми аналитическим функциями. Класс функции определяется формой кривой, аппроксимирующей зависимость ускорения от времени - полусинусоидальная, косинусоидальная, прямоугольная, треугольная, пмлообразная, трапецеидальная и т. п.

Механический удар сопровождается быстрым выделением энергии, в результате чего возникают местные упругие или пластические деформации, возбуждение волн напряжения и другие эффекты, приводящие иногда к нарушению функционирования и к разрушению конструкции КА. Ударная нагрузка, приложенная к КА, возбуждает в нем быстрозатухающие собственные колебания. Значение перегрузки при ударе, характер и скорость распределения напряжений по конструкции определяются силой и продолжительностью удара и характером изменения ускорения. Удар, воздействуя на КА, может вызвать его механическое разрушение. В зависимости от длительности, сложности ударного процесса и его максимального ускорения при испытаниях определяют степень жесткости элементов конструкции КА. Простой удар может вызвать разрушение вследствие возникновения сильных, хотя и кратковременных перенапряжений в материале. Сложный удар может привести к накоплению микродеформаций усталостного характера. Так как конструкция КА обладает резонансными свойствами, то даже простой удар может вызвать колебательную реакцию в ее элементах, также сопровождающуюся усталостными явлениями.

Механические перегрузки вызывают деформацию и поломку деталей, ослабление соединений (сварных, резьбовых, заклепочных), перемещение механизмов и органов управления, в результате чего изменяется регулировка и настройка приборов и появляются другие неисправности.

Испытания конструкций и систем КА на воздействие ударных нагрузок

Общая задача испытаний КА на воздействие ударных нагрузок состоит в проверке способности КА и всех его элементов выполнять свои функции в процессе ударного воздействия и после него. При этом ставится целью максимально приблизить результаты испытательного удара к эффекту реального удара в натурных условиях эксплуатации КА.

При воспроизведении в условиях наземного эксперимента режимов ударного нагружения накладывают ограничения на форму импульса мгновенного ускорения как функции времени, а также на допустимые пределы отклонений формы импульса. Дело в том, что практически каждый ударный импульс на лабораторном стенде сопровождается пульсацией, являющейся следствием резонансных явлений в ударных установках и вспомогательном оборудовании. Так как спектр ударного импульса в основном является характеристикой разрушающего действия удара, то наложение даже небольшой пульсации может сделать результаты лабораторных измерений недостоверными.

Ударные стенды обычно состоят из следующих элементов: испытуемого объекта, закрепленного на платформе или в контейнере вместе с датчиком ударной перегрузки; средства разгона для сообщения объекту необходимой скорости; тормозного устройства; системы управления; регистрирующей аппаратуры для записей исследуемых параметров объекта и закона изменения ударной перегрузки; первичных преобразователей; вспомогательных приборов для регулировки режимов функционирования испытываемого объекта; источников питания, необходимых для работы испытуемого объекта и регистрирующей аппаратуры.

Простейшим стендом для ударных испытаний является стенд, работающий по принципу сбрасывания закрепленного на каретке испытуемого объекта с некоторой высоты, т.е. использующий для разгона силы земного тяготения. При этом форма ударного импульса определяется материалом и формой соударяющихся поверхностей. На таких стендах можно обеспечить ускорение до . Стенд, работающий по принципу сбрасывания объекта с определенной высоты, имеется в научно - исследовательской лаборатории кафедры 601 МАИ и называется научно - исследовательским стендом бросковых испытаний. Ударные перегрузки на таких стендах зависят от высоты падения, жесткости тормозящих элементов, суммарной массы стола и объекта испытанийи характеризуются следующей зависимостью:. Подбирая соответствующим образом отмеченные величины, можно получать требуемые перегрузки.

Имеются испытательные стенды, использующие гидравлический или пневматический привод для разгона каретки с испытуемым объектом. В качестве разгонного устройства могут быть использованы резиновые амортизаторы, пружины, а также линейные асинхронные двигатели.

Возможности практически всех ударных стендов определяются конструкцией тормозных устройств. Перечислим и кратко охарактеризуем виды этих устройств, используя заимствованный из [1] рис.2.

Рис.2

1) Для получения больших перегрузок с малым фронтом их нарастания () используется удар испытуемого объекта с жесткой плитой (рис. 2). Торможение происходит за счет возникновения упругих сил в зоне контакта при ударе.

2) Для получения перегрузок в широком диапазоне, от десятков до десятков тысяч единиц, с временем нарастания их от десятков микросекунд до нескольких миллисекунд используют деформированные элементы в виде пластины или прокладки, лежащей на жестком основании. Материалами этих прокладок могут быть сталь, латунь, медь, свинец, резина и т.п. (рис. 2)

3) Для обеспечения какого - либо заданного закона изменения перегрузки и длительности времени ударного ускорения () в небольшом диапазоне используют деформируемые элементы в виде наконечника, который устанавливается между плитой ударного стенда и испытуемым объектом (рис.2).

4) Для воспроизведения удара с относительно большим путем торможения применяют тормозное устройство, состоящее из свинцовой, пластически деформированной плиты, расположенной на жестком основании стенда, и внедряющегося в нее жесткого наконечника соответствующего профиля (рис.2), закрепленного на объекте или на платформе стенда. Такие тормозные устройства позволяют получать перегрузки в широком диапазонес небольшим временем их нарастания, доходящим до десятков миллисекунд.

5) В качестве тормозного устройства может быть использован упругий элемент в виде рессоры (рис.2.), установленной на подвижной части ударного стенда. Такой вид торможения обеспечивает получение относительно малых перегрузок полусинусоидальной формы с продолжительностью, измеряемой миллисекундами.

6) Пробиваемая металлическая пластина, закрепленная по контуру в основании установки в сочетании с жестким наконечником платформы или контейнера, обеспечивает получение относительно малых перегрузок (рис. 2).

7) Деформируемые элементы, установленные на подвижной платформе стенда (рис. 2), в сочетании с жестким коническим уловителем обеспечивают получение длительно действующих перегрузок с временем нарастания до десятков миллисекунд.

8) Тормозное устройство с деформированной шайбой (рис.2) позволяет получать большие пути торможения объекта (до 200 - 300 мм) при малых деформациях шайбы.

9) Пневматическое тормозное устройство рис.2и позволяет воспроизвести интенсивные ударные импульсы различной формы. Кроме того, это устройство является устройством многоразового действия.

10) Широко применяются гидравлические амортизаторы. При ударе испытуемого объекта об амортизатор его шток погружается в жидкость. Жидкость выталкивается через очко штока по закону, определяемому профилем регулирующей иглы. Изменяя профиль иглы, можно реализовать различный вид закона торможения.

В заключение лекции следует отметить, что ударные испытания можно проводить и на маломасштабных моделях объекта, руководствуясь при разработке методики такого эксперимента теорией подобия физических процессов.

Лекция N6

Тема лекции: Газодинамические испытания КА.

Газодинамическим испытаниям подвергаются маломасштабные модели околоземных КА многоразового использования, а также маломасштабные модели спускаемых аппаратов, входящих в атмосферу планеты с высокими скоростями.

Задачи, решаемые при газодинамических испытаниях, и методический подход к их решению.[]

При исследовании газодинамических процессов путем математического или физического моделирования решаются главным образом две задачи: 1) Определение силовых нагрузок, связанных с распределением сил аэродинамического давления и трения вдоль внешней поверхности КА и акустическим воздействием. 2) Определение газодинамических характеристик обтекания, которые являются необходимой информацией для расчета плотности конвективных и радиационных тепловых потоков к поверхности КА

Возможны два подхода к исследованию воздействия потока газа на испытуемый объект:

- Исследуемый объект располагается неподвижно в экспериментальной установке, а обтекаемому его поверхность газу сообщается определенная относительная скорость.

- Исследуемому объекту сообщается определенная скорость относительно неподвижной газовой среды.

Первый подход реализуется в аэродинамических трубах, в которых создается газовый поток с требуемыми параметрами, обтекающий исследуемое тело.

Второй подход реализуется с применением баллистических установок или ракетных трасс.

Как в первом, так и во втором случае испытания проводятся на маломасштабных моделях изделий, что объясняется ограниченностью энергетических возможностей испытательных центров. В связи с этим моделирование условий обтекания испытываемых объектов, обработка и интерпретация результатов испытаний на моделях основывается на теории подобия физических явлений. Физическое подобие газодинамических процессов предполагает наличие геометрического, кинематического и динамического подобия. Геометрическое подобие предполагает пропорциональность сходственных линейных размеров для модели и натуры. Кинематическое подобие предполагает, что кинематические характеристики сходственных частиц подобных потоков, обтекающих геометрически подобные тела, пропорциональны, т.е. в пропорциональные отрезки времени частицы проходят подобные пути, а скорости и ускорения в сходственных точках пропорциональны и ориентация этих векторов в пространстве одинакова. Динамическое подобие предполагает, что силы, действующие в сходственных точках, пропорциональны по величине и одинаково ориентированы.

Подобие называется полным, если во всем пространстве, окружающем модель и натуру, соблюдается подобие картин обтекания в целом. Если это условие не соблюдается, то подобие называется неполным или частичным.

Если записать уравнения Навье - Стокса в безразмерном виде то для двух гидродинамически подобных течений эти уравнения окажутся совершенно идентичными. Безразмерные уравнения Навье - Стокса в качестве коэффициентов (параметров) содержат следующие безразмерные комплексы, состоящие из размерных параметров: ,,, , где- соответственно характерный размер, скорость, давление, плотность, динамический коэффициент вязкости, ускорение земного тяготения, характерное время. Подстрочный индексотносится к параметрам невозмущенного потока газа. Первый безразмерный комплекс называют в газовой динамике числом Струхаля (Sh), второй - числом Фруда (Fr), третье – числом Эйлера (Eu), четвертое – числом Рейнольдса (Re).

Очевидно, что для геометрически и кинематически подобных течений безразмерные уравнения движения будут одинаковыми в том случае, если каждый из этих комплексов имеет одно и то же значение для натурного объекта и модели и если в сходственных точках этих потоков относительные значения плотности и вязкости одинаковы (). Отмеченные безразмерные комплексы являются, таким образом, критериями динамического подобия для геометрически и кинематически подобных систем.

В сжимаемой среде критерий Эйлера (Eu) можно представить с помощью известного выражения для скорости звукав видеEu=; это значит, что в случае газовых течений появляются два дополнительных критерия подобия:

Число Пуассона и число Маха, значения которых при подобии течений около модели и натуры должны быть одинаковыми,.

Средства экспериментального моделирования газодинамических процессов

Аэродинамические трубы

В зависимости от скорости газового потока в рабочей части аэродинамические трубы делятся на следующие виды []:

1) дозвуковые ();

2) околозвуковые и трансзвуковые ();

3) сверхзвуковые ();

4) гиперзвуковые ().

По конструктивным признакам аэродинамические трубы можно разделить на два класса: трубы незамкнутого типа; трубы замкнутого типа.

При испытаниях КА или его отдельных фрагментов в аэродинамических трубах могут решаться следующие задачи:

- Исследование влияния формы обтекаемого потоком газа поверхности объекта на аэродинамические характеристики этого объекта в зависимости от скорости набегающего потока и в зависимости от ориентации объекта относительно вектора скорости газа.

- Исследование динамики полета КА.

- Исследование влияния аэродинамических сил на упругие характеристики оболочки конструкции КА.

- Физические исследования, связанные с течением воздуха в различных условиях (исследование газодинамической картины обтекания объекта сверхзвуковым потоком, исследование характеристик пограничного слоя и т.д.

В дозвуковых трубах(см. рис. 1) воздух засасывается в трубу вентилятором 7, приводимым во вращение электродвигателем 8. Засасываемый в трубу воздух проходит сначала через спрямляющую решетку 1 и детурбулирующую сетку 2, становится плоскопараллельным, затем, пройдя через форкамеру 3, поступает в сужающееся сопло 4, разгоняется и попадает в рабочую часть 5 трубы, где установлена испытуемая модель. Из рабочей части поток попадает в диффузор 6 и затем выбрасывается в окружающее пространство. В замкнутых аэродинамических трубах поток, пройдя рабочую часть и диффузор, направляется в обратный канал и через сопло вновь возвращается в рабочую часть. Кратко отметим назначение упомянутых частей аэродинамической трубы. Спрямляющая решетка, набранная из тонких металлических пластин служит для формирования параллельного потока и разрушения крупных вихрей. Детурбулизирующие сетки способствуют выравниванию скоростей по сечению потока и уменьшению начальной турбулентности потока в рабочей части трубы. Форкамера служит для выравнивания и успокоения потока. Сопло служит для разгона потока воздуха от минимальной на входе до расчетной на выходе в рабочую часть. Дозвуковые сопла имеют вид сужающихся каналов. Рабочая часть - это пространство между соплом и диффузором. Здесь устанавливается модель для испытания и располагаются аэродинамические весы. Газовый поток в рабочей части трубы должен иметь равномерное поле скоростей и давлений.

Рис. 1

Околозвуковые трубыв основном являются мощными дозвуковыми трубами замкнутого типа и постоянного действия. Основное отличие околозвуковых труб от трансзвуковых состоит в конструкции стенок рабочей части: околозвуковые трубы имеют сплошные стенки, которые препятствуют расхождению линий тока около модели, поэтому поле течения искажается. У трансзвуковых труб стенки рабочей части не сплошные, а имеют щели и перфорации, которые ослабляют влияние стенок на форму линий тока вблизи модели, благодаря этому в трансзвуковых трубах можно получать режимы обтекания сс дозвуковым соплом.

Сверхзвуковые трубыработают в диапазоне чисел Маха. Высокие скорости газового потока обеспечиваются сверхзвуковыми соплами, которые имеют дозвуковой и сверхзвуковой участки. На дозвуковом участке воздух, поступающий из форкамеры, разгоняется до звуковой скорости. На сверхзвуковом участке происходит дальнейшее увеличение скорости и окончательное формирование равномерного по сечению сверхзвукового потока. Каждое сверхзвуковое сопло рассчитано на получение определенного значения числа Маха на выходе. Это значение зависит от отношения площадей выходного сечения сопла и критического сечения. Для получения в трубе нескольких значений числа Маха применяют сменные или регулируемые сопла. Диффузор в сверхзвуковой трубе состоит из двух частей: начального сужающегося канала и следующего за ним расширяющегося участка трубы. В сужающейся части диффузора сверхзвуковая скорость газа постепенно снижается до звуковой за счет образования скачков уплотнения, затем дозвуковой поток попадает в расширяющуюся часть диффузора, где происходит дальнейшее торможение потока.

В гиперзвуковых трубахдля получения потока с числомв форкамере необходимо создать давление, превышающее давление в рабочей части трубы в десятки тысяч раз, что обуславливает большие абсолютные значения давления в форкамере. Получение необходимого перепада давлений можно обеспечить за счет разряжения в рабочей части трубы, которое может быть достигнуто при помощи вакуум - камеры или применения многоступенчатого эжектора.

Гиперзвуковые трубы бывают непрерывного и периодического действия. По принципу работы трубы периодического действия бывают: атмосферно - вакуумные, эжекторные, баллонные, баллонно-вакуумные и баллонно-эжекторные.

На приведенных ниже рисунках 2 и 3, заимствованных из [], изображены схемы атмосферно - вакуумной и эжекторной труб.

Рис. 2

В атмосферно - вакуумной трубе в резервуаре 9 создается необходимое для работы трубы разряжение. После открытия быстродействующей задвижки 8 атмосферный воздух устремляется в трубу через форкамеру 1, в которой установлены сетки и решетки 2, спрямляющие поток. В сопле 3 воздух, достигнув сверхзвуковой скорости с заданным числом Маха, поступает в рабочую часть 4, где установлен испытуемый объект 5, а затем через диффузор 6 и 7 попадает в вакуумный резервуар 9. При этом в течение короткого времени в рабочей части создается сверхзвуковой поток. Если скорость потока в рабочей части трубы выше 4 , то выходящий из сопла воздух, расширяясь, настолько снижает свою температуру, что начинается конденсация паров воды. Это явление можно устранить, установив, например, перед форкамерой газовый или электрический подогреватель. Вместо этого можно атмосферный воздух перед подачей в форкамеру пропускать через осушитель.

Рис. 3

В эжекторной трубе поток воздуха создается от эжектора (струйного насоса) 5, установленного за рабочей частью 3, к которому подается воздух повышенного давления. В ресивере 8 эжектора 5 создается повышенное давление. После открытия крана 7 воздух из ресивера поступает в эжектор 5. Эжектируемый воздух поступает в трубу из атмосферы, проходя через осушитель 1, сопло Лаваля 2 и рабочую часть 3, где установлен испытуемый объект 4, после чего, смешиваясь с эжектирующим воздухом, уходит через диффузор 6 в атмосферу.

Рассмотренные трубы периодического действия позволяют получать потоки с большим числом Маха при сравнительно небольших энергетических затратах, однако действие таких труб настолько кратковременно, что получение количественных характеристик становится затруднительным.

Трубы непрерывного действия точнее воспроизводят заданные параметры потока. Рабочие условия в них могут поддерживаться неизменными в течение длительного времени. Ниже приводится схема сверхзвуковой трубы непрерывного действия. Схема, как и две предыдущие, заимствована из []. Труба приводится в действие электродвигателем 8, на валу которого находится многоступенчатый компрессор 6, обеспечивающий высокий перепад давлений для работы трубы на сверхзвуковых скоростях. Воздух, пройдя компрессор, сильно нагревается, поэтому в конструкции трубы предусмотрен охладитель 5, в который и направляется воздух. Охлажденный воздух, пройдя сопло Лаваля 4, приобретает сверхзвуковую скорость и поступает в рабочую часть 3, где установлен испытуемый объект 2, а затем через диффузор 1 и колено обратного канала 9 с поворотными лопатками 7 возвращается в компрессор.

Рис. 4

Ударные трубы

Представляют собой экспериментальные установки для исследования газодинамики и физико-химических процессов в газовых потоках с высокой температурой. Схематическое изображение одного из вариантов ударной трубы представлено на рис. 5.

Рис. 5

На этом рисунке 1 - отсек высокого давления; 2 – диафрагма; 3 - отсек низкого давления; 4 - диафрагма; 5 - сопло; 6 - испытуемый объект (модель); 7 - окно; 8 - вакуумная камера; 9 - вакуумные насосы.

Принцип работы трубы заключается в следующем: по достижении расчетного давления в отсеке 1 разрывается диафрагма 2 и газ устремляется в отсек 3. Образовавшаяся ударная волна распространяется по рабочему газу, нагревая и сжимая его. Когда волна достигнет конца отсека низкого давления, диафрагма 4 на входе в сопло разрушится и произойдет отражение ударной волны, а сжатый и разогретый газ за отраженной ударной волной истечет через сопло 5 в вакуумную камеру 8. После встречи отраженной ударной волны с контактной поверхностью произойдет ее преломление и отражение, и эта волна возвратится к соплу. Начиная с этого момента, установившееся движение газа в сопле прекращается. Течение становится нестационарным и работа трубы заканчивается.

В ударных аэродинамических трубах достигается давление торможения до и температура торможения до. Время работы около 6.

Баллистические установки[1].

Если в аэродинамических установках изучается взаимодействие газового потока cнеподвижной или совершающей ограниченное движения моделью изделия, то в баллистических установках имеется возможность исследовать взаимодействие газового потока с моделью в условиях свободного полета.

Баллистические установки состоят из метательного устройства, сообщающего моделям необходимую начальную скорость, и измерительного участка, на котором производится регистрация кинематических характеристик полета модели. На выходе измерительного участка баллистической установки помещают системы торможения и улавливания моделей. По принципу разгона модели метательные устройства, применяемые при высокоскоростном метании, могут быть разделены на два класса: газодинамические, в которых модель разгоняется газом; электродинамические, в которых модель разгоняется под действием электромагнитных сил.

В газодинамических метательных устройствах чаще всего используют либо пороховые пушки, либо легкогазовые пушки, в которых для разгона модели применяют легкие газы (водород и гелий), скорость звука в которых значительно больше, чем в пороховых газах. Если предельная скорость метания в пороховых пушках не превышает , то легкогазовые пушки могут сообщить моделям скорости, превышающие 10 - 12. Однако следует заметить, что высокие значения скорости метания модели в легкогазовых пушках достигаются при реализации многоступенчатого принципа разгона модели, который заключается в следующем:Cначала срабатывает пороховая пушка, разгоняющая до сверхзвуковых скоростей поршень, который движется в камере, заполненной легким (рабочим) газом. Ударная волна, возникающая перед поршнем, нагревает и сжимает рабочий газ. Когда температура и давление в камере с рабочим газом достигнет расчетной величины, разрывается диафрагма, отделяющая камеру от ствола пушки. Сжатый и разогретый газ устремляется в ствол пушки и разгоняет испытуемую модель до высокой скорости.

Баллистические установки имеют ряд преимуществ перед аэродинамическими трубами. Эти преимущества состоят в следующем: 1) возможность изменения в широком диапазоне чисел и ; 2) возможность моделирования реальных температур торможения; 3) набегающий на модель газовый поток является невозмущенным; 4) отсутствуют державки и элементы крепления модели, которые искажали бы газодинамическую картину обтекания модели; 5) возможность достаточно точного и надежного контроля параметров набегающего потока; 6) возможность исследования нестационарных явлений.

К недостаткам баллистических стендов необходимо отнести следующее:

- после каждого выстрела модель разрушается;

- из-за малых размеров модели затруднено размещение внутри нее измерительных приборов;

- желаемое положение модели в потоке задается более сложным способом, чем в аэродинамической трубе.

Лекция N7

Тема лекции: Испытания на воздействие акустических нагрузок.

Источники акустических нагрузок

В натурных условиях элементы конструкции КА подвергаются интенсивному акустическому нагружению. Акустическая нагрузка - это воздействие возникающего при работе ракетных двигателей звукового (акустического) поля на ракету - носитель, КА, сооружения и агрегаты стартового комплекса, обслуживающий персонал. Акустическая энергия, генерируемая реактивной струей ракетного двигателя, характеризуется частотным спектром, силой звука, уровнем звукового давления, продолжительностью воздействия и некоторыми другими параметрами.

Сила звука, или интенсивность акустического излучения, определяется количеством энергии, переносимой через единицу площади, перпендикулярной к направлению его распространения, в единицу времени. Для синусоидальной плоской волны сила звука , где- амплитуда переменного звукового давления,- средняя плотность среды,- скорость звука в данной среде. Для технических целей оказалось очень удобно использовать закон Вебера-Фехнера, утверждающий, что прирост силы ощущения звука человеческим ухом пропорционален логарифму отношения энергий двух сравниваемых раздражителей. Уровень звукового давлениявыражают в децибелах и относят к пределу слышимости:.

На образование акустического поля затрачивается до 1 % кинетической энергии струи. Частотный спектр шума работающего двигателя, как правило, широкополосный и гладкий (так называемый белый шум). Однако при некоторых компоновках многосопловых двигательных установок или при взаимодействии реактивных струй с элементами пускового устройства в гладком спектре шума появляются дискретные составляющие – выбросы на отдельных частотах, интенсивности которых иногда в 100 раз и более превосходят уровень интенсивности сплошного спектра. Для объекта наибольшую опасность представляют дискретные составляющие, которые могут приводить к его раскачке и даже разрушению, особенно при совпадении частоты составляющей с собственной частотой конструкции. Наиболее чувствительны к акустическим нагрузкам аппаратура и некоторые элементы системы управления.

При работе двигательной установки шум возникает не только от реактивных струй, но и отвибраций, например, от вибраций сопла и трубопроводов, вызванных воздействием на них колебаний давления в пограничном слое, непосредственных вибраций двигателей из-за несбалансированности вращающихся элементов, работы арматуры и т. д. Однако эти источники вибрации невелики по амплитуде и имеют высокую частоту. Основные, т.е. наиболее опасные, вибрации возникают в результате акустического воздействия на летательный аппарат, поэтому исследованию акустического поля двигательной установки уделяется большое внимание. Теоретические методы исследования акустического нагружения аппарата не вполне надежны. Отметим не претендующий на полноту комплекс явлений, расчет которых в настоящее время весьма затруднен и требует проведения экспериментальных исследований: 1) увеличение нагрузок на элементы аппарата из-за “динамической добавки”, вызванной случайным (шумовым) акустическим нагружением; 2) появление нежелательных механических резонансов в электронной аппаратуре, элементах автоматики и приборах, вызванных акустической проницаемостью оболочки аппарата и вибрацией; 3) влияние акустики на процессы теплообмена; 4) влияние акустической прозрачности баков на процессы перемешивания холодных (нижних) и горячих (верхних) слоев жидкости, особенно криогенных; 5) акустический нагрев криогенных жидкостей в баках вследствие явлений поглощения звука этими жидкостями; 6) акустическая кавитация жидкостей на входе в насосы двигателей.

Виды акустических испытаний и их краткая характеристика [1]

Для изучения акустического воздействия на изделие проводят следующие испытания:

- наземные натурные непосредственно на изделии;

- на открытом стенде с работающим двигателем;

- в закрытых боксах с различными источниками шума;

- в акустических камерах.

Наземные натурные испытания позволяют наиболее полно приблизиться к эксплуатационным условиям, и следовательно, обеспечить полную проверку прочности конструкции и функционирования бортового оборудования. Такие испытания являются заключительными в общей программе отработка КА на акустические воздействия. Недостатком таких испытаний является их высокая стоимость, так как в течении всех испытаний двигатели, генерирующие акустическое поле, должны работать на максимальной мощности. Полетные условия акустического нагружения в наземных условиях практически не воспроизводятся.

Испытания на открытом стенде с работающим двигателем более экономичны. На таких стендах можно испытывать крупные изделия. Ускорение испытаний и соблюдение требуемых уровней нагрузки в данном случае достигается выбором положения испытуемых объектов относительно источника шума. Режимы испытаний устанавливают на основе натурных измерений звуковых нагрузок и деформаций в контрольных точках поверхности изделия.

Испытания в закрытых боксах позволяют получить более высокие уровни акустических нагрузок, чем на открытом стенде, в результате чего сокращается продолжительность испытаний. Недостатком этих испытаний является некоторое искажение звукового поля по сравнению с натурными условиями.

Испытания в специальных акустических камерах, где создаются условия, близкие к натурным, позволяют получить наиболее достоверную информацию о работоспособности испытуемого объекта. Однако ограниченный объем этих камер не позволяет проводить испытания крупногабаритных объектов.

Ниже приведен заимствованный из [1] рисунок 1, где изображена принципиальная схема открытого бокса для проведения акустических испытаний.

Рис.1

Испытуемые изделия 4 располагают на монтажной раме 5 вокруг струи 3, истекающей из сопла реактивного двигателя 1. Для сброса газов за рабочим участком расположен диффузор 2. Параметры звукового поля и реакции испытуемых объектов контролируют при помощи микрофонов и тензорезисторных датчиков. Источником шума является выхлопная струя реактивного двигателя. Вблизи среза выхлопного сопла уровни шума составляют приблизительно 160 - 175 . Такое интенсивное акустическое излучение реактивных струй связано с неоднородностью структуры турбулентного потока и может рассматриваться как результат взаимодействия нестационарных турбулентных вихрей. Следует отметить, что акустическую мощностьтурбулентной струи определяют по формуле, где;- плотность среды в струе;- скорость истечения газа из сопла двигателя; - диаметр среза сопла;и- соответственно плотность окружающей среды и скорость распространения звука в окружающей среде.

Схема закрытого бокса, входящего в состав так называемой реверберационной камеры, изображена на рисунке 2.

Рис.2

На этом рисунке позиция 1 – испытательный бокс, 2 – корпус камеры, 3 - ворота, 4 – рупоры сирен, 6 - газоструйные сирены, 7 - бокс генераторов звука, 8 – выхлопная труба.

Газоструйные сирены создают уровни звукового давления до 180 и выше при широком диапазоне частот. Сирены подразделяются на динамические и статические Принцип работы статических сирен основан на эффекте, заключающемся в том, что при продувании через коническое сопло потока воздуха со сверхзвуковой скоростью в воздушном потоке перед соплом создается периодическое распределение давления с участками нестабильности. Помещая резонатор в эти участки, получают излучение звуковых волн в окружающее резонатор пространство. Динамические сирены могут воспроизводить дискретный спектр частот и широкополосный спектр частот. Принцип работы такой сирены заключается в следующем. В струе воздуха, истекающего из сопел специальной камеры (форкамеры), устанавливается вращающийся диск с отверстиями. Число сопел и шаг распределения их по окружности форкамеры равны числу и шагу распределения отверстий в диске. Попеременное открывание и закрывание отверстий приводит к резкому изменению газодинамических параметров струи и, следовательно, к возникновению пульсаций давления в горле рупора сирены, которые создают звуковые колебания воздушной среды. Частота звуковых колебаний зависит от частоты вращения диска с отверстиями.

В реверберационных камерах происходит отражение звука от стенок и звуковое поле вокруг испытуемого объекта представляет собой интерфенционную картину звуковых волн, т.е. возникает эффект усиления колебаний среды.

Толщина стен бокса реверберационной камеры может достигать до 80 при уровне шума 170. С внутренней стороны поверхность стен имеет покрытие, обладающее высокой отражательной способностью по отношению к звуковым волнам. Это достигается за счет оштукатуривания стен с последующим их железнением. Иногда стены покрываются облицовочной плиткой. Такие стены почти полностью (99 %) отражают звуковые волны. В результате этого в камере создается диффузное звуковое поле, т. е. поле в котором уровни звукового давления одинаковы в любой точке камеры. Размеры камеры выбирают в соответствии с размерами объекта испытаний. В среднем объем реверберационной камеры должен превышать объем испытуемого объекта не менее чем в 8 раз. Для того чтобы акустическое поле было более равномерным, камеры относительно небольших объемов (менее 1000) строят с непараллельными стенками, что способствует улучшению условий реверберации звука. Камеры большого объема обычно делают прямоугольной формы. Для повышения диффузности звукового поля в таких камерах иногда применяют рассеиватели – жесткие клинья, устанавливаемые на внутренних поверхностях камер. Приближенно объем реверберационной камеры можно определить из условия обеспечения нижнего частотного диапазона измерений по формуле, где- объем камеры, - нижняя граничная частота.

В реверберационных камерах, как правило, испытывают полноразмерные конструкции летательного аппарата. Генераторы звукового давления устанавливаются в разных местах внутри камеры или могут быть установлены вне камеры. Уровень шума, достигаемый в таких камерах, составляет 177 . Управляемый спектр шума - от 40 до 10000. Такие камеры позволяют намного снизить потребную акустическую мощность, а также практически избежать воздействие сильного шума на обслуживающий персонал. Уровень шума около камеры не превышает 50.

Лекция N8

Тема лекции: Общая характеристика тепловой отработки КА. Проблемы тепловакуумных испытаний КА.

Соседние файлы в предмете Конструирование летательных аппаратов