
- •1.Энергия в жизни человека и уровень развития цивилизации. Виды тэр.
- •2. Основные источники энергии, используемые человечеством. Альтернативные источники энергии.
- •3. Единицы измерения и учета электрической энергии.
- •4. Единицы измерения и учета тепловой энергии.
- •Вопрос 5 Единицы измерения и учета топлива. Условное топливо. Нефтяной эквивалент.
- •Вопрос 6 Топливо -энергетический баланс мирового хозяйства.
- •7. Историческое развитие мирового топливно-энергетического баланса
- •8. Энергетические ресурсы мира
- •9 Топливно-энергетический баланс Беларуси
- •10.Энергетические ресурсы Беларуси
- •11. Энергоемкость как критерии использования топливно энергетический баланс беларуси. Цели энергосбережения
- •12. Энергоемкость внутреннего валового продукта.
- •13. Потеря работоспосбности от необратимости процессов. Уравнение Гюи-Стодолы.
- •14. Понятие об эксергии. Виды эксергии. Термомеханическая эксергия
- •15. Эксергия в-ва в объеме
- •16. Эксергия потока
- •17. Эксэргия теплоты (теплового потока). Эксэргия работы.
- •18. Эксергитический баланс и эксергитический кпд. Преимущества эксергитического анализа.
- •21. Эксергический анализ процесса теплообмена.
- •22. Потери эксергии в химическом реакторе (при горении топлива)
- •23. Обратный цикл и его термодинамическая схема.
- •24. Тепловой насос и его отличие от холодильной машины. Коэффициент преобразования энергии кпэ теплового насоса.
- •25.Обратный цикл Карно
- •29. Основные характеристики парокомпрессорного тн
- •30. Рабочие тела тепловых насосов
- •31. Оценка энергетической эффективности парокомпрессорных тн
- •32. Возможности парокомпрессорных тн с электроприводом
- •33 Возобновляемые источники энергии
- •34 Гидроэнергетика Беларуси
- •35 Солнечная энергетика и возможности её развития в рб
- •36 Ветроэнергетика и её потенциал для Беларуси
- •37 Биомасса как топливо и ее потенциал для беларуси
- •38 Биогаз как источник энергии
- •39 Биотопливо для двигателей как альтернативный источник энергии
- •40 Понятие об энерготехнологии
- •41. Регенерация теплоты в энерготехнологических системах
- •42. Включение теплового насоса в технологическую схему. Теплонасосные сушилки
- •43. Парокомпрессия как способ использования вторичного пара
- •44. Сферы потребления энергии на предприятиях
- •45.Основные направления уменьшения энергии.
- •46. Внедрение нового энергоемкого оборудования и новых технологий.
- •47. Применение тепловых насосов.
- •48. Вторичные энергоресурсы (вэр) пищевых производств.
- •53.Энергосбережение при освещении.
- •54.Энергосбережение при вентиляции.
- •55. Экологические проблемы сжигания топлива.
- •56. Экологические проблемы атомной энергетики.
- •57. Экологические проблемы гидроэнергетики
- •58. Управление энергосбережением в рб. Государственная политика рб в области энергосбережения.
- •59. Нормативно-правовая база энергосбережения
- •60. Закон рб об энергосбережении
- •61. Положение по нормированию расхода топлива, тепловой и электрической энергии.
- •63. Классификация норм расхода тэр. Состав и структура норм. Классификация норм расхода топливно-энергетических ресурсов
- •Состав и структура норм расхода топливно-энергетических ресурсов
- •64. Порядок согласования, утверждения и переутверждения норм расхода тэр.
- •65. Ценовое и тарифное регулирование потребления энергии
- •66. Одноставочные и двухставочные тарифы на электроэнергию
- •67 Зонные тарифы на электроэнергию
- •68 Энергетический менеджмент на предприятии
39 Биотопливо для двигателей как альтернативный источник энергии
Этот вид энергии имеет большие преимущества перед другими видами, поскольку он относительно дешевый и практически безвреден для окружающей среды.
Биодизельное топливо – вид топлива, получаемый из жиров растительного и животного происхождения и используемый для замены нефтяного дизельного топлива. Для производства топлива необходимо масла, метилового спирта, катализаторы. Неочищенное биодизельное топливо также можно использовать в качестве печного топлива, а глицерин, получаемый в результате очистки, в фармакологии. Кроме того отходы производства рапсового масла – это высококалорийный, насыщенный белком корм для сельскохозяйственных животных. При производстве биодизеля можно получать и фосфорные удобрения.
Биодизель, как показали опыты, при попадании в воду не причиняет вреда растениям и животным. Кроме того, он подвергается практически полному биологическому распаду: в почве или в воде микроорганизмы за 28 дней перерабатывают 99 % биодизеля, что позволяет говорить о минимизации загрязнения рек и озёр.
Сокращение выбросов СО2. При сгорании биодизеля выделяется ровно такое же количество углекислого газа, которое было потреблено из атмосферы растением, являющимся исходным сырьём для производства масла, за весь период его жизни. Биодизель в сравнении с обычным дизельным топливом почти не содержит серы. Это хорошо с точки зрения экологии.
Высокая температура воспламенения. Точка воспламенения для биодизеля превышает 100 °С, что позволяет назвать биотопливо относительно безопасным веществом.
40 Понятие об энерготехнологии
Энерготехнология - общетехническая фундаментальная дисциплина, изучающая методы получения, передачи и использования теплоты, а также принципы действия и конструктивные особенности тепло- и парогенераторов, трансформаторов теплоты, тепловых машин, аппаратов и устройств.
Энерготехнологическая система (ЭТС) — технологическая система, использующая энергию различного вида для получения конечной продукции.
41. Регенерация теплоты в энерготехнологических системах
Количество энергии, которое необходимо подвести на разных стадиях химико-технологического процесса, определено его режимом. Затраты энергии можно уменьшить путем регенерации энергии между стадиями процесса и использования потенциала потоков в самом процессе. Но компенсировать полностью затраты энергии не всегда удается по нескольким причинам.
Часть энергии теряется необратимо из-за природы почти всех протекающих процессов - они термодинамически необратимы, и диссипация энергии неизбежна. Например, необратимы затраты на преодоление гидравлического сопротивления потоков в аппаратах и трубопроводах. Часть тепла (энергии) неизбежно теряется с общими тепловыми потерями. К ним относятся испарение как средство поддержания температурного режима (например, в градирнях и других подобных системах), вывод неиспользуемых тепловых потоков, естественные тепловые потери через изоляцию. Недостающую энергию можно выработать в технологической системе, потребляя топливо. Для этого необходимо в систему включить энергетический узел как подсистему ХТС.
Химико-технологическая система, включающая энергетический узел, потребляющий топливо и вырабатывающий энергию для компенсации необратимых потерь с целью поддержания технологического режима и обеспечения функционирования ХТС, называется энерготехнологической системой.
Такая система не потребляет энергию извне, энергетически она автономна, потребляя необходимое количество топлива. Пример энерготехнологическая схема в производстве аммиака. Для сжатия и циркуляции азотоводородной смеси на стадии синтеза используют мощные турбокомпрессоры, требующие скоростного привода (паровая турбина). Пар высоких параметров обычно получают на ТЭЦ, и производство аммиака становится сильно зависимым от нее. Избежать этого можно в энерготехнологической системе. Дымовые газы после трубчатой печи конверсии метана имеют температуру более 950 °С, и их можно использовать для выработки пара высоких параметров, но их не хватает для привода паровой турбины. Недостаток энергии восполняют сжиганием дополнительного топлива в дымовом газоходе после трубчатой печи, т.е. установкой энергетического узла как элемента технологической схемы. Используют также тепло технологического газа после второй, паровоздушной конверсии метана. Тепла технологического газа, дымовых газов и дополнительной горелки как энергетического узла достаточно, чтобы отказаться от потребления энергии извне. Таким образом, производство аммиака стало автономным по энергии.