
- •Введение
- •Физиология возбудимых тканей
- •Законы раздражения возбудимых тканей.
- •Физиология нервов и нервных волокон.
- •Физиология синапсов.
- •Физиология центральной нервной системы
- •Развитие рефлекторной теории.
- •Основные свойства нервных центров
- •Принципы, лежащие в основе координационной деятельности цнс.
- •Процессы торможения в центральной нервной системе.
- •Роль различных отделов цнс в формировании мышечного тонуса и фазных движений.
- •Общая физиология железвнутренней секреции
- •Методы исследования желез внутренней секреции.
- •Щитовидная железа
- •Околощитовидные железы
- •Надпочечники
- •1. Минералокортикоиды. Из минералокортикоидов наиболее активны альдостерон и дезоксикортикостерон. Они участвуют в регуляции минерального обмена организма, прежде всего,натрия и калия.
- •Половые железы
- •Поджелудочная железа
- •Тканевые гормоны
- •Автономная нервная система
- •Симпатический отдел автономной нервной системы
- •Функции крови.
- •Константы крови
- •Характеристика форменных элементов крови
- •Свертывание крови
- •Группы крови
- •Кровообращение
- •Физиологические свойства сердечной мышцы.
- •Фазовый анализ цикла сердечной деятельности
- •Методы исследования деятельности сердца и сосудов
- •Регуляция деятельности сердца и сосудов.
- •Сосудистая система
- •Регуляция системного кровообращения
- •Физиологические свойства и особенности сосудистых барорецепторов.
- •Обмен энергии
- •Основы рационального питания
- •Терморегуляция
- •Выделение
- •Участие органов выделения в поддержании водно-солевого баланса
- •Выделительная функция желудочно-кишечного тракта
- •Выделительная функция почек
- •Процесс мочеобразования
- •Гомеостатическая функция почек
- •Роль почек в регуляции ионного состава крови
- •Инкреторная функция почек
- •Метаболическая функция почек
- •Регуляция деятельности почек
- •Дыхание
- •Биомеханика вдоха и выдоха
- •Легочные объемы
- •Транспорт газов кровью
- •Регуляция дыхания
- •Дыхание при пониженном атмосферном давлении
- •Дыхание при повышенном атмосферном давлении
- •Пищеварение
- •Методы изучения функции пищеварительного тракта
- •Пищеварение в полости рта
- •Функции слюны.
- •Пищеварение в желудке
- •Принципы регуляции процессов пищеварения
- •Пищеварение в кишечнике
- •Всасывание
- •Физиологические основы голода и насыщения
- •Физиология печени
- •Анализаторы (сенсорные системы)
- •Периферический (рецепторный) отдел анализаторов
- •Свойства проводникового отдела анализаторов
- •Свойства коркового отдела анализаторов
- •Слуховой анализатор
- •Вкусовой анализатор
- •Обонятельный анализатор
- •Кожный анализатор
- •Вестибулярный анализатор
- •Высшая нервная деятельность
- •Отличия безусловных рефлексов от условных.
- •Условия (правила) выработки условных рефлексов.
- •Торможение условных рефлексов
- •Свойства нервных процессов
- •Типы высшей нервной деятельности
- •Высшие психические функции
- •Мотивации
- •Сознание
- •Физиология сна
Транспорт газов кровью
Кислород и углекислый газ в крови находятся в двух состояниях: в химически связанном и в растворенном. Перенос кислорода из альвеолярного воздуха в кровь и углекислого газа из крови в альвеолярный воздух происходит путем диффузии. Движущей силой диффузии является разность парциального давления (напряжения) кислорода и углекислого газа в крови, и в альвеолярном воздухе. Молекулы газа в силу диффузии переходят из области большего его парциального давления в область низкого парциального давления.
Транспорт кислорода. Из общего количества кислорода, который содержится в артериальной крови, только 0,3 об% растворено в плазме, остальное количество кислорода переносится эритроцитами, в которых он находится в химической связи с гемоглобином, образуя оксигемоглобин. Присоединение кислорода к гемоглобину (оксигенация гемоглобина) происходит без изменения валентности железа.
Степень насыщения гемоглобина кислородом, т. е. образование оксигемоглобина, зависит от напряжения кислорода в крови. Эта зависимость выражается графиком диссоциации оксигемоглобина (рис.29).
Рис.29. График диссоциации оксигемоглобина:
а-при нормальном парциальном давлении СО2
б-влияние изменений парциального давления СО2
в-влияние изменений рН;
г-влияние изменений температуры.
Когда напряжение кислорода в крови равно нулю, в крови находится только восстановленный гемоглобин. Повышение напряжения кислорода приводит к увеличению количества оксигемоглобина. Особенно быстро уровень оксигемоглобина возрастает (до 75%) при увеличении напряжения кислорода от 10 до 40 мм рт. ст., а при напряжении кислорода, равным 60 мм рт. ст. насыщение гемоглобина кислородом достирает 90%. При дальнейшем повышении напряжения кислорода насыщение гемоглобина кислородом к полному насыщению идет очень медленно.
Крутая часть графика диссоциации оксигемоглобина соответствует напряжению кислорода в тканях. Отлогая часть графика соответствует высоким напряжениям кислорода и свидетельствует о том, что в этих условиях содержание оксигемоглобина мало зависит от напряжения кислорода и его парциального давления в альвеолярном воздухе.
Сродство гемоглобина к кислороду изменяется в зависимости от многих факторов. Если сродство гемоглобина к кислороду повышается, то процесс идет в сторону образования оксигемоглобина и график диссоциации смещается влево. Это наблюдается при снижении напряжения углекислого газа при понижении температуры, при сдвиге рН в щелочную сторону.
При снижении сродства гемоглобина к кислороду процесс идет больше в сторону диссоциации оксигемоглобина, при этом график диссоциации смещается вправо. Это наблюдается при повышении парциального давления углекислого газа, при повышении температуры, при смещении рН в кислую сторону.
Максимальное количество кислорода, которое может связать кровь при полном насыщении гемоглобина кислородом, называется кислородной емкостью крови. Она зависит от содержания гемоглобина в крови. Один грамм гемоглобина способен присоединить 1,34 мл кислорода, следовательно, при содержании в крови 140 г/л гемоглобина кислородная емкость крови будет 1,34 ' 140-187,6 мл или около 19 об%.
Транспорт углекислого газа. В растворенном состоянии транспортируется всего 2,5-3 об % углекислого газа, в соединении с гемоглобином - карбгемоглобин - 4-5 об% и в виде солей угольной кислоты 48-51 об% при условии, если из венозной крови можно извлечь около 58 об% углекислого газа.
Углекислый газ быстро диффундирует из плазмы крови в эритроциты. Соединяясь с водой, он образует слабую угольную кислоту. В плазме эта реакция идет медленно, а в эритроцитах под влиянием фермента карбоангидразы она резко ускоряется. Угольная кислота сразу же диссоциирует на ионы Н+ и НСО3-. Значительная часть ионов НСО3- выходит обратно в плазму (рис. 30).
Рис.30. Схема процессов, происходящих в эритроцитах при поглащении или отдаче кровью кислорода и углекислого газа.
Гемоглобин и белки плазмы, являясь слабыми кислотами, образуют соли со щелочными металлами: в плазме с натрием, в эритроцитах с калием. Эти соли находятся в диссоциированном состоянии. Так как угольная кислота обладает более сильными кислотными свойствами, чем белки крови, то при ее взаимодействии с солями белков белок-анион связывается с катионом Н+, образуя при этом недиссоциированную молекулу, а ион НСО3- - образует с соответствующим катионом бикарбонат - в плазме бикарбонат натрия, а в эритроцитах бикарбонат калия. Эритроциты называют фабрикой бикарбонатов.