
- •Пространственная организация белковой молекулы
- •Четвертичная структура
- •При отравлениях солями тяжелых металлов, этанолом и др. Обратимость денатурации
- •Белки стресса
- •Факторы стабилизации белка в растворе.
- •Свойства воды гидратной оболочки
- •Вопрос 5.Методы разделения и очистки белков. Высаливание, диализ, электрофорез, хроматография. Основные методы количественного определения белка в растворах (фотометрия, иммунохимия).
- •Вопрос 6. Биологическая роль ферментов.
- •Вопрос 7. Различие и сходство неорганических и органических котализаторов причины зависимости активности ферментов от температуры и рН среды.
- •Вопрос 8. Механизм ферментотивного катализа. Энергия активации, энерг барьеры реакции. Стадии ферментотивного катализа. Активность фермента и единицы измерения активности фермента.
- •1. Кислотно-основной катализ
- •2. Ковалентный катализ
- •11. Номенклатура и классификация ферментов, связь с типом катализируемой реакции. Понятие об изоферментах, их биологическая роль. Энзимодиагностика.
- •I. Причины, приводящие к увеличению количества ферментов в крови
- •I. Причины, приводящие к увеличению количества ферментов в крови
- •Вопрос 12.Понятие о биологическом окислении и его значении для организма.Катаболизм энергитических субстратов.
- •Вопрос 13.Ацетил-КоА как центральный метаболит обмена в-в.Его пути образования и использования….
- •Вопрос 14 Регуляция цтк и его взаимная связь с тк дыханием.
- •15.Реакции дегидрирования цикла трикарбоновых кислот: Их биологическое значение, регуляция. Взаимосвязь цикла трикарбоновых кислот с тканевым дыханием. *
- •Вопрос 17.Тканевое дыхание.Локализация,химическа сущность,биологическое значение.
- •Вопрос 18.Механизм сопряжения окисления и фосфорилирования через протонный градиент.Окисление фосфорелирования атф-синтаза.
- •1. Протонный градиент изоэлектрохимический потенциал
- •19. Свободное окисление. Разобщители дыхания и фосфорилирования. Термогенез.
- •19.Свободное окисление.Разобщители дыхания и фосфорилирования.Термогенез.
- •IV. Образование токсичных форм кислорода в цпэ
- •Вопрос 20.Понятие о свободных радикалах.Активные формы кислорода (пероксид,супероксид),строение,пути образования.
- •Вопрос 23 Строение классификация и био. Роль углеводов.
- •24. Переваривание углеводов в желудочно-кишечном тракте. Пищеварительные ферменты: место синтеза, субстрат, гидролизуемые химические связи, продукты переваривания.
- •Вопрос 24 Переваривание углеводов в жкт
- •Вопрос 25.Механизмы всасывания продуктов переваривания углеводов в жКт.
- •Вопрос 26. Гликоген его строение и био роль
- •Вопрос 27 Аэробный распад глюкозы. Био. Роль, схема , конечные продукты ключевые
- •Вопрос 28 Анаэробный распад глюкозы. Био роль схема!!!, ключ ферменты.
- •Вопрос 31.Взаимосвязь гликолиза в мышцах и глюконеогенеза в печени.
- •Вопрос 32. Гор. Регул. Уровня глюкозы в крови.
- •Вопрос 33. Гармональная регуляция уровня глюкозы в крови.Гипер и гипо гликемические гармоны.Глюкагон,кортизол,адреналин.
- •Вопрос 34.Конц.Глю в крови как интегральный показатель углев. Обмена в организме…
- •Вопрос 35.Нарушение углеводного обмена при сахарном диабете….
- •86. Витамин в2 (рибофлавин)
- •87. Витамин в3 (пантотеновая кислота)
- •88. Витамин в5 (никотинамид)
- •89. Витамин в6 (пиридоксин).
- •91. Витамин “а” ( ретинол, антиксерофтальмический)
- •92. Витамин д (холекальциферол, антирахитный)
- •93. Витамин к (филлохинон).
- •94. Витамин е (токоферол, витамин размножения).
- •Альбумины
- •Глобулины
- •1. Клиренс ингалируемых частиц
- •2. Мукоциты
- •3. Поверхностные эпителиоциты
- •4. Неспецифические элементы противовирусной защиты (4)
- •2. Интерферон- (ifn)
19. Свободное окисление. Разобщители дыхания и фосфорилирования. Термогенез.
В. Разобщение дыхания
И ФОСФОРИЛИРОВАНИЯ
Некоторые химические вещества (протонофоры) могут переносить протоны или другие ионы (ионофоры) из межмембранного пространства через мембрану в матрикс, минуя протонные каналы АТФ-синтазы. В результате этого исчезает электрохимический потенциал и прекращается синтез АТФ. Это явление называют разобщением дыхания и фосфорилирования. В результате разобщения количество АТФ снижается, а АДФ увеличивается. В этом случае скорость окисления NADH и FADH2 возрастает, возрастает и количество поглощённого кислорода, но энергия выделяется в виде теплоты, и коэффициент Р/О резко снижается. Как правило, разобщители — липофильные вещества, легко проходящие через липидный слой мембраны. Одно из таких веществ — 2,4-ди-нитрофенол (рис. 6-17), легко переходящий из ионизированной формы в неионизированную, присоединяя протон в межмембранном пространстве и перенося его в матрикс.
-некоторые лекарства, например дикумарол — антикоагулянт или метаболиты которые образуются в организме, билирубин -продукт катаболизма гема (см. раздел 13), тироксин — гормон щитовидной железы (см раздел 11). Все эти вещества проявляют разобщающее действие только при их высокой концентрации.
19.Свободное окисление.Разобщители дыхания и фосфорилирования.Термогенез.
Разобщители дыхания и фосфорилирования-некоторые химические в-ва ,переносящие протоны и другие ионы из межмембранного пространства в матрикс,минуя протонные каналы АТФ-синтазы ,в результате чего исчезает электрохимический потенциал и прекращается синтез АТФ.
-далее АТФ снижается,АДФ увеличивается.Скорость окисления НАД Н и ФАД Н2 возрастает.Возрастает и кол-во поглощаемого кислорода,но энергия выделяется в виде тепла и коэффициент р/о снижается.
Разобщители-липофильные в-ва ,легко проходящие через липидный слой мембран(2,4-динитрофенол)
Термогенез-процесс поддерживающий тепло в организме
-термогенин -разобщающий блок
-при охлаждении стимулирует освобождение норадреналина из окончания симпатических нервов,далее топливо и регулятор -разобщение дыхания и фосфорилирования.
Понятие о свободных радикалах. Активные формы кислорода (супероксид, гидроксильный радикал, оксид азота и перекись водорода), химическая структура, пути образования.
IV. Образование токсичных форм кислорода в цпэ
Большая часть активных форм кислорода образуется при переносе электронов в ЦПЭ, прежде всего, при функционировании (}Н2-дегидроге-назного комплекса. Это происходит в результате неферментативного переноса («утечки») электронов с QH2 на кислород (рис. 6-31).
В отличие от рассмотренного механизма на этапе переноса электронов при участии цитохромоксидазы (комплекс IV) «утечка» электронов не происходит благодаря наличию в ферменте специальных активных центров, содержащих Fe и Си и восстанавливающих 02 без освобождения промежуточных свободных радикалов.
В фагоцитирующих лейкоцитах (гранулоцитах, макрофагах и эозинофилах) в процессе
фагоцитоза усиливаются поглощение .Ативные формы кислорода образуются в результате активации NADPH-оксидазы, преимуществен кализованной на наружной стороне плазматической мембраны.
Защита организма от токсического дейсшиц ктивных форм кислорода связана с наличием во всех клетках высокоспецифичных ферментов: супероксиддисмутазы, каталазы, глутатиом. пероксидазы, а также с действием антиоксилим-тов (см. раздел 8).