
- •Белки и их биологическая роль
- •Характеристика простых белков
- •Методы разделения (фракционирования) белков
- •Характеристика сложных белков
- •Хромопротеины
- •Липид-белковые комплексы
- •Нуклеопротеины
- •Состав нк:
- •Углевод-белковые комплексы
- •Хондроитинсульфаты (хс). Это полимеры, структурной единицей которых является димер, состоящий из глюкуроновой кислоты и n-ацетилгалактозамина (сульфатирован по 4 или 6 положению).
- •Фосфопротеины
- •Ферменты
- •Строение коферментов
- •Изоферменты
- •Свойства ферментов
- •Классификация и номенклатура ферментов
- •Номенклатура ферментов
- •Современные представления о ферментативном катализе
- •Молекулярные эффекты действия ферментов
- •Теория кислотно-основного катализа
- •Регуляция активности ферментов
- •Обмен веществ
- •Обмен белков Переваривание и всасывание белков
- •Превращение белков в органах пищеварения
- •Переваривание сложных белков и их катаболизм
- •Гниение белков и обезвреживание его продуктов
- •Метаболизм аминокислот
- •Общие пути обмена веществ
- •Образование конечных азотистых продуктов
- •Временное обезвреживание аммиака
- •Орнитиновый цикл мочевинообразования
- •Синтез и распад нуклеотидов
- •I. Превращение пвк
- •II. Цикл Кребса:
- •Функции цтк:
- •III. Биологическое окисление.
- •Дыхательная цепь (дц) (или Цепь Переноса Электронов – цпэ, или Электрон-Транспортная Цепь – этц)
- •Функционирование дц
- •Окислительное фосфорилирование
- •Альтернативные варианты биологического окисления
- •Репликация (самоудвоение, биосинтез) днк
- •Транскрипция (передача информации с днк на рнк) или биосинтез рнк
- •Трансляция (биосинтез белка)
- •Адресование белков
- •Регуляция биосинтеза белка
- •Обмен углеводов
- •Простагландины, простациклины, тромбоксаны и лейкотриены
- •Переваривание липидов
- •Механизм ресинтеза жира
- •Транспортные формы липидов в организме
- •Превращение липидов в тканях
- •Биосинтез глицерина и вжк в тканях
- •Биосинтез холестерина (хс)
- •Патология липидного обмена
- •Классификация гормонов
- •Механизм действия гормонов
- •Гормоны центральных желез - гипоталамуса и гипофиза
- •Гормоны щитовидной железы
- •Гормоны паращитовидных желез
- •Гормоны поджелудочной железы (пж)
- •Гормоны половых желез
- •Классификация витаминов
- •Роль витаминов в обмене веществ
- •Понятие о гиповитаминозах, авитаминозах и гипервитаминозах
- •Причины гиповитаминозов
- •Жирорастворимые витамины Витамин а
- •Витамин d
- •Витамин е
- •Роль витамина е в обмене веществ
- •Витамин к
- •Роль витамина к в обмене веществ
- •Водорастворимые витамины Витамин с
- •Роль витамина с в обмене веществ
- •Витамин р
- •Витамин в1
- •Витамин в2
- •Витамин рр
- •Витамин в6
- •Витамин в9, в10, вс (фолиевая кислота)
- •Витамин в12
- •Витамин в3
- •Витамин н (биотин)
- •Витаминоподобные вещества Парааминобензойная кислота
- •Гидроксилирование ксенобиотиков с участием микросомальной монооксигеназной системы
- •Роль печени в пигментном обмене
- •Биосинтез гема
- •Распад гема
- •Патология пигментного обмена
- •Биохимия крови Типы изменения биохимического состава крови
- •Белковый состав крови Функции белков крови:
- •Общий белок
- •Альбумины
- •Глобулины в норме 20-30 г/л
- •I. Α1 -глобулины
- •II. Α2 -глобулины
- •III. Β-глобулины
- •IV. Γ-глобулины (иммуноглобулины, антитела)
- •Небелковые азотсодержащие вещества Остаточный азот
- •Углеводный обмен
- •Липидный обмен
- •Минеральный обмен
- •Ферменты плазмы крови
- •Физические свойства мочи здорового человека, их изменения при патологии
- •Показатели химического состава мочи
- •Особенности обмена веществ в нервной ткани
- •Химическая передача нервного возбуждения
- •Тропомиозин
Нуклеопротеины
Нуклеопротеины – это сложные белки, содержащие в качестве небольшой части нуклеиновые кислоты (до 65%).
НП состоят из 2-х частей: белковой (содержит гистоны и протамины, которые являясь основными белками, придают основные свойства) и простетической, представленной НК, сообщающими кислотные свойства. Взаимодействие между этими частями по ион-ионному механизму.
Все НП по составу НК можно разделить на 2 группы: рибонуклеопротеины (РНП) и дезоксирибонуклеопротеины (ДНП).
Состав нк:
НК – высокомолекулярные органические вещества, полинуклеотиды. Мономерами являются мононуклеотиды. Каждый мононуклеотид состоит из: углевода, азотистого основания и фосфорной кислоты. Так, РНК содержит -D-рибофуранозу (рибозу), одно из 4-х возможных азотистых оснований (А, Г, Ц или У) и остаток фосфорной кислоты. ДНК содержит -D-дезоксирибофуранозу (дезоксирибозу), одно из 4-х возможных азотистых оснований (А, Г, Ц или Т) и остаток фосфорной кислоты.
Строение азотистых оснований:
К группе пуриновых относятся аденин (6-аминопурин) и гуанин (2-амино-6-оксипурин). К группе пиримидиновых – урацил (2,4-диоксипиримидин), тимин (5-метилурацил) и цитозин (2-окси-4-аминопиримидин).
Схема образования нуклеотидов: [рис. схемы: аденин присоединяет рибозу и фосфорную к-ту, при этом выделяются 2 молекулы воды и образуется АМФ]. В клетке имеются нуклеотидфосфаты, дезоксинуклеотидфосфаты, трифосфаты (АТФ).
Структура нуклеиновых кислот:
Имеют несколько уровней структурной организации.
1. первичная структура. РНК и ДНК построены однотипно – представлены полинуклеотидной цепью, состоящей из отдельных мононуклеотодов, соединённых между собой 3’→5’-фосфодиэфирными связями. Эта связь образуется между фосфорным остатком одного мононуклеотида и 3’-ОН-группой пентозного остатка другого мононуклеотида. [рис. образования такой связи] Разные НК отличаются числом, порядком чередования и составом НК.
2. вторичная структура. По рентгеноструктурному анализу ДНК в 1953г Уотсон и Крик предложили модель строения ДНК, которая объясняла самовоспроизведение организмов, наследственную изменчивость. Вторичная структура представляет собой двойную спираль, состоящую из 2 полинуклеотидных цепей, закрученных вокруг одной общей оси. Эти цепи антипараллельны, т.е. одна идет в направлении 5’→3’, а другая 3’→5’. Пуриновому основанию одной цепи соответствует пиримидиновое основание другой цепи – эти основания комплиментарны друг другу, т.е. дополняют одно другое до целого. Между А и Т две водородные связи (А=Т), а между Г и Ц – 3 (ГЦ).
Молекула спирализована на всем протяжении, гидрофобные участки внутри спирали, их плоскости перпендикулярны основаниям и параллельны друг другу. В вертикальном направлении возникают гидрофобные взаимодействия. Вторичная структура стабилизируется водородными связями и гидрофобными взаимодействиями.
Вторичная структура РНК более простая, представляет собой одну полинуклеотидную цепь, в которой спирализованы лишь некоторые участки. Вторичная структура РНК представлена в виде клеверного листа. Для тРНК известна третичная структура в форме буквы Г. [рис. РНК в виде клеверного листа]
Биологическая роль НК:
ДНК – основная часть её локализуется в ядре в виде ДНП в составе хроматина или хромосом делящихся клеток. Главная роль – хранение генетической информации, участие в процессе транскрипции в качестве матрицы для построения молекулы РНК.
Все РНК по функции делятся на:
- рРНК (рибосомальные), составляют до 80% в составе рибосом. Играют роль каркаса для объединения рибосом белков;
- мРНК (иРНК) – образуется в ядре (ядрышке). Переносит информацию из ядра в цитоплазму, является матрицей в процессе трансляции белка. последний кодон иРНК соответствует последней АК в белке;
- тРНК по своей форме напоминает форму клеверного листа и представляет собой полинуклеотидную цепь, которая составляет 3 петли и отдельные участки могут быть спирализованы. тРНК активирует аминокислоты и транспортирует их к месту биосинтеза белков, также участвует в трансляции. Имеет антикодоновый триплет – место, с помощью которого тРНК связывается с комплиментарным кодоном мРНК.