
- •Курс лекций по биохимии
- •Список сокращений
- •Глава 1 введение в биохимию
- •История развития биохимии
- •Развитие медицинской биохимии в Беларуси
- •Содержание предмета биохимии
- •Разделы и направления биохимии
- •Аминокислоты и их роль в организме
- •Модифицированные аминокислоты, присутствующие в белках
- •В молекуле коллагенаприсутствуют:
- •Аминокислоты как лекарственные препараты
- •Пептиды
- •Методы разделения пептидов
- •Автоматический синтез пептидов
- •Биологические функции белков
- •Физико-химические свойства белков
- •Уровни структурной организации белков
- •Предварительные исследования перед определением первичной структуры белка
- •Стадии определения первичной структуры белков и полипептидов
- •Методы определения n-концевых аминокислот
- •Методы определения с-концевых аминокислот
- •Общие закономерности, касающиеся аминокислотной последовательности белков
- •Классификация шаперонов (ш)
- •Роль шаперонов в фолдинге белков
- •Роль шаперонов в защите белков клеток от денатурирующих стрессовых воздействий
- •Болезни, связанные с нарушением фолдинга белков
- •Функционирование белков
- •Активный центр белков и избирательность связывания его с лигандом
- •Характеристика активного центра
- •Глава 3 фермЕнТы. Механизм действия ферментов
- •Отличия ферментов от неорганических катализаторов.
- •Структура молекулы ферментов
- •Кофакторы – ионы металлов
- •Роль металлов в ферментативном катализе
- •Активный центр фермента
- •Механизм действия ферментов
- •Энергетические изменения при химических реакциях
- •Роль активного центра в ферментативном катализе
- •Молекулярные механизмы ферментативного катализа
- •Кислотно-основной катализ
- •Ковалентный катализ
- •Специфичность действия ферментов
- •Специфичность по отношению к реакции
- •Необратимое ингибирование
- •Обратимое ингибирование
- •Конкурентное ингибирование
- •Лекарственные препараты как конкурентные ингибиторы
- •Антиметаболиты как лекарственные препараты
- •Неконкурентное ингибирование
- •Аллостерическая регуляция
- •Ферменты плазмы крови
- •Энзимопатии
- •Применение ферментов в медицине
- •Энзимодиагностика
- •Применение ферментов в качестве лекарственных средств
- •Глава 5 структура и функции нуклеиновых кислот
- •Структура и функции днк
- •Организация генома человека
- •Виды и особенности структурной организации рнк
- •Гибридизация нуклеиновых кислот
- •Методы изучения структуры нуклеиновых кислот
- •Глава 6 биосинтез нуклеиновых кислот
- •Биосинтез днк
- •Репарация днк
- •Биосинтез рнк
- •Регуляция транскрипции
- •Процессинг рнк
- •Обратная транскрипция
- •Глава 7 биосинтез белка
- •Активация аминокислот
- •Синтез белка у эукариот
- •Посттрансляционные изменения белков
- •Регуляция синтеза белка
- •Ингибиторы матричных биосинтезов
- •Использование днк-технологий в медицине
- •Глава 8 введение в метаболизм
- •Специфические и общие пути катаболизма
- •Метаболиты в норме и при патологии
- •Уровни изучения обмена веществ
- •Глава 9 биологические мембраны
- •Механизмы мембранного транспорта веществ
- •Глава 10 энергетический обмен. Биологическое окисление
- •Структурная организация цепи тканевого дыхания
- •Окислительное фосфорилирование атф
- •Хемиоосмотическая гипотеза Питера Митчелла (1961г.)
- •Строение атф-синтазы
- •Нарушения энергетического обмена
- •Глава 11 типы окисления. Антиоксидантные системы
- •Оксидазный тип окисления
- •Пероксидазный тип окисления
- •Диоксигеназный тип окисления
- •Монооксигеназный тип окисления
- •Активные формы кислорода (свободные радикалы)
- •Перекисное окисление липидов (пол)
- •Антиоксидантные системы организма
- •Глава 12 гормоны – общая характеристика и механизмы действия
- •Классификация гормонов
- •Классификация по месту образования
- •Классификация по механизму действия
- •Основные свойства и особенности действия гормонов
- •Рецепторы гормонов
- •Механизм передачи гормональных сигналов через мембранные рецепторы
- •Аденилатциклазная система.
- •Гуанилатциклазная система.
- •3. Оксид азота.
- •Инозитолтрифосфатная система.
- •Механизм передачи гормонального сигнала через внутриклеточные рецепторы
- •Передача сигналов через рецепторы, сопряженные с ионными каналами
- •Глава 13 особенности действия гормонов Гормоны гипоталамуса и гипофиза
- •Гормоны гипоталамуса и гипофиза
- •Гормоны гипофиза
- •Гормоны щитовидной железы
- •Гиперфункция щитовидной железы
- •Гипофункция щитовидной железы
- •Гормоны поджелудочной железы
- •Биологическое действие
- •Гипофункция поджелудочной железы
- •Гиперфункция поджелудочной железы
- •Глюкагон
- •Регуляция обмена ионов кальция и фосфатов
- •Гиперфункция паращитовидной железы (гиперпаратиреоз)
- •Гипофункция паращитовидных желез (гипопаратиреоз)
- •Гормоны надпочечников Гормоны мозгового вещества надпочечников
- •Биологическое действие
- •Гиперфункция мозгового вещества надпочечников
- •Гормоны коры надпочечников (кортикостероиды)
- •Глюкокортикоиды
- •Биологическое действие
- •Минералокортикоиды
- •Биологическое действие
- •Гиперфункция коры надпочечников
- •Гипофункция коры надпочечников
- •Гормоны половых желёз Мужские половые гормоны
- •Биологическое действие
- •Анаболические стероиды
- •Нарушение андрогенной функции
- •Женские половые гомоны
- •Биологическое действие на половые органы
- •Действие на неполовые органы
- •Нарушения гормональных функций яичников
- •Эйкозаноиды
- •Синтез эйкозаноидов
- •Номенклатура эйкозаноидов
- •Применение гормонов в медицине
- •Глава 14 биохимия питания
- •Углеводы
- •Глава 15 Основы витаминологии
- •Биологические функции витаминов
- •Классификация витаминов
- •Основные характеристики водорастворимых витаминов
- •Основные характеристики жирорастворимых витаминов
- •Обмен витаминов
- •Обеспеченность организма витаминами
- •Гиповитаминозы
- •Гипервитаминозы
- •Методы оценки обеспеченности организма человека витаминами
- •Применение витаминов в клинической практике
- •Поливитаминные препараты
- •Антивитамины
- •Антивитамины
- •Глава 16 углеводы тканей и пищи – обмен и функции
- •Всасывание моносахаридов в кишечнике
- •Транспорт глюкозы из крови в клетки
- •Нарушения переваривания и всасывания углеводов
- •Метаболизм фруктозы
- •Метаболизм галактозы
- •Метаболизм лактозы
- •Глава 17 пути метаболизма глюкозы
- •Гликолиз
- •Гликоген
- •Пентозофосфатный путь (пфп)
- •Глюконеогенез (гнг)
- •Аланин Аланин Аланин
- •Путь глюкуроновой кислоты
- •Глава18 обмен гликогена
- •Синтез гликогена (гликогеногенез)
- •Глюкагон Адреналин
- •Аденилатциклаза Аденилатциклаза
- •Протеинкиназа Протеинкиназа
- •Нарушения обмена гликогена
- •Глава 19 липиды тканей, переваривание и транспорт липидов
- •Глава 20 обмен триацилглицеролов и жирных кислот
- •Регуляция синтеза триацилглицеролов
- •Регуляция мобилизации триацилглицеролов
- •Ожирение
- •Обмен жирных кислот
- •Обмен кетоновых тел
- •Синтез жирных кислот
- •Глава 21 обмен сложных липидов
- •Глава 22 метаболизм холестерола. Биохимия атеросклероза
- •Биохимия атеросклероза
- •Глава 23. Обмен аминокислот. Динамическое состояние белков организма
- •Переваривание белков в желудочно-кишечном тракте
- •Наследственные нарушения транспорта аминокислот
- •Расщепление белков в тканях
- •Превращение аминокислот микрофлорой кишечника
- •Пути обмена аминокислот в тканях
- •Трансаминирование аминокислот
- •Биологическое значение трансаминирования
- •Дезаминирование аминокислот
- •Окислительное дезаминирование глутамата
- •Непрямое дезаминирование аминокислот
- •Декарбоксилирование аминокислот
- •Биогенные амины
- •Пути катаболизма углеродного скелета аминокислот
- •Глава 24 Образование и обезвреживание nh3в организме
- •Тканевое обезвреживание аммиака
- •Общее (конечное) обезвреживание аммиака
- •Регуляция синтеза мочевины
- •Нарушения синтеза и выведения мочевины
- •Глава 25 Метаболизм отдельных аминокислот Метаболизм метионина
- •Реакция активации метионина
- •Синтез креатина
- •Метаболизм фенилаланина и тирозина
- •Нарушение обмена фенилаланина и тирозина
- •Глава 26 обмЕн нуклеотидов
- •Биосинтез пуриновых нуклеотидов
- •Биосинтез пиримидиновых нуклеотидов
- •Распад нуклеиновых кислот в желудочно-кишечном тракте и тканях
- •Нуклеопротеины
- •Нарушения обмена нуклеотидов Ксантинурия
- •Глава 27 регуляция и взаимосвязь метаболизма
- •Аллостерическая регуляция метаболических путей
- •Взаимосвязь метаболизма
- •Глава 28 биохимия печени
- •Роль печени в углеводном обмене
- •5. В печени происходит синтез глюкуроновой кислоты. Роль печени в липидном обмене
- •Роль печени в обмене аминокислот и белков
- •Обезвреживающая функция печени
- •Обезвреживание нормальных метаболитов
- •Обезвреживание ксенобиотиков
- •Катаболизм гемоглобина
- •Желтухи. Дифференциальная диагностика
- •Желтуха новорожденных
- •Биохимические механизмы развития печеночной недостаточности
- •Биохимические методы диагностики поражений печени
- •Глава 29 Водно-электролитный обмен Распределение жидкости в организме
- •Состав жидкостей
- •Растворенные вещества
- •Характеристики жидкостей
- •Вода, биологическая роль, обмен воды
- •Обмен воды
- •Регуляция объема внеклеточной жидкости
- •Роль системы ренин-ангиотензин
- •Активация системы
- •Предсердный натрийуретический фактор
- •Нарушения водно-электролитного обмена и кислотно-основного равновесия
- •Нарушения кислотно-основного равновесия
- •Минеральные компоненты тканей, биологические функции
- •Основные биологические функции
- •Натрий, биологическая роль, обмен, регуляция
- •Калий, биологическая роль, обмен, регуляция
- •Кальций, биологическая роль, обмен, регуляция
- •Фосфор, биологическая роль, обмен, регуляция
- •Эссенциальные микроэлементы
- •Глава № 30 биохимия крови
- •Общая характеристика
- •Функции крови
- •Особенности метаболизма в форменных элементах крови
- •Гемоглобин человека
- •Производные гемоглобина
- •Варианты гемоглобина в онтогенезе
- •Гемоглобинопатии
- •Обмен железа
- •Железодефицитные анемии
- •Белки плазмы крови
- •Характеристика белков сыворотки крови
- •Патологии системы свертывания крови. Гемофилии
- •Диссеминированное внутрисосудистое свертывание (двс-синдром)
- •Глава 31 биохимия почек
- •Особенности биохимических процессов в почечной ткани
- •Глава 32 особенности метаболизма в нервной ткани
- •Функции аксонального плазматического тока
- •Гемато-энцефалический барьер (гэб)
- •Общие особенности метаболизма нервной ткани
- •Обмен свободных аминокислот в головном мозге
- •Нейропептиды
- •Энергетический обмен в нервной ткани
- •Особенности углеводного обмена в ткани головного мозга
- •Липидный обмен в нервной ткани
- •Обмен липидов в нервной ткани имеет следующие особенности
- •Роль медиаторов в передаче нервных импульсов
- •Нейрохимические основы памяти
- •Спинномозговая жидкость (ликвор или цереброспинальная жидкость)
- •Глава 33 биохимия мышечной ткани
- •Белки мышечной ткани
- •Биохимические механизмы сокращения и расслабления мышц
- •Роль ионов кальция в регуляции мышечного сокращения
- •Деполяризация т-трубочек
- •Глава 34 Биохимия соединительной ткани.
- •Эластин
- •Протеогликаны и гликопротеины
- •Cписок литературы
- •Оглавление
Эластин
В отличие от коллагена, образующего прочные фибриллы, эластин обладает резиноподобными свойствами. Нити эластина, содержащиеся в тканях легких, в стенках сосудов, в эластичных связках, могут быть растянуты в несколько раз по сравнению с их обычной длиной. Но после снятия нагрузки они возвращаются к свернутой конформации.
Эластин содержит в своем составе около 800 аминокислотных остатков, средии которых преобладают аминокислоты с неполярными радикалами: глицин, валин, аланин. Эластин содержит довольно много пролина и лизина, но лишь немного гидроксипролина и полностью отсутствует гидроксилизин. Наличие большого количества гидрофобных радикалов препятствует созданию стабильной глобулы, в результате полипептидные цепи не формируют регулярные вторичную и третичную структуры, а принимают разные конфигурации. В соединительной ткани молекулы эластина образуют волокна и слои, в которых отдельные пептидные цепи связаны множеством жестких поперечных сшивок в разветвленную сеть. В образовании этих сшивок участвуют остатки лизина двух, трех или четырех пептидных цепей. Структуры, образующиеся при этом, называются десмозинами.
Наличие ковалентных сшивок между пептидными цепочками с неупорядоченной, случайной конформацией позволяет всей сети волокон эластина растягиваться и сжиматься в разных направлениях, придавая соответствующим тканям свойство эластичности.
Следует отметить, что эластин синтезируется как растворимый мономер, который называется «тропоэластин». После образования поперечных сшивок эластин приобретает свою конечную форму, которая характеризуется нерастворимостью, высокой стабильностью и очень низкой скоростью обмена.
Протеогликаны и гликопротеины
Протеогликаны – высокомолекулярные соединения, состоящие из белка (5-10%) и гликозаминогликанов (90-95%). Они образуют основное вещество межклеточного матрикса.
Гликозаминогликаны – гетерополисахариды, состоящие из многократно повторяющихся дисахаридов, мономерами которых являются уроновые кислоты и гексозамины.. Раньше их называли мукополисахаридами, так как они обнаруживались в слизистых секретах. Они связывают большие количества воды, в результате чего межклеточное вещество приобретает желеобразный характер.
Белки в протеогликанах представлены одной полипептидной цепью разной молекулярной массы. Белки протеогликанов называют коровыми или сердцевинными белками. Полисахаридные компоненты у разных протеогликанов разные.
Функции протеогликанов:
структурные компоненты внеклеточного матрикса;
обеспечивают тургор различных тканей;
как полианионы связывают поликатионы и катионы;
действуют как сита во внеклеточном матриксе (фильтрация в почках);
влияют на клеточную миграцию;
противостоят компрессионным силам в межклеточном матриксе;
поддерживают прозрачность роговицы;
выполняют структурную роль в склере;
антикоагулянты;
формируют рецепторы на поверхности клеток;
образуют межклеточные контакты;
входят в состав синаптических и других везикул клеток.
В настоящее время известна структура шести основных классов гликозаминогликанов.
1. Гиалуроновая кислота – находится во многих органах и тканях. В хряще она связана с белком и участвует в образовании протеогликановых агрегатов, в некоторых тканях (стекловидное тело, пупочный канатик, суставная жидкость) встречается в свободном виде. Повторяющаяся дисахаридная единица в гиалуроновой кислоте состоит из D-глюкуроновой кислоты и N-ацетилглюкозамина.
2. Хондроитинсульфаты – самые распространенные гликозаминогликаны в организме человека. Они содержатся в хряще, сухожилиях, связках, артериях, роговице глаза. Хондроитинсульфаты являются важным составным компонентом агрекана – основного протеогликана хрящевого матрикса. В организме человека встречаются 2 вида хондроитинсульфатов: хондроитин-4-сульфат и хондроитин-6-сульфат. Они построены одинаковым образом: из D-глюкуроновой кислоты и N-ацетил-D-галактозамин-4-сульфата или N-ацетил-D-галактозамин-6-сульфата соответственно.
3. Кератансульфаты – наиболее гетерогенные гликозаминогликаны. Отличаются друг от друга по суммарному содержанию углеводов и распределению в разных тканях. Они содержат остаток галактозы и N-ацетил-D-галактозамин-6-сульфат. Входят в состав роговицы глаза, хрящей, межпозвоночных дисков.
4. Дерматансульфат – характерен для кожи, кровеносных сосудов, сердечных клапанов, менисков, межпозвоночных дисков. Повторяющаяся дисахаридная единица – L-идуроновая кислота и N-ацетил-D-галактозамин-4-сульфат.
5. Гепарин – важный компонент противосвертывающей системы крови. Синтезируется тучными клетками. Наибольшие количества гепарина обнаруживаются в легких, печени и коже. Дисахаридная единица состоит из D-глюкуронат-2-сульфата и N-ацетилглюкозамин-6-сульфата.
6. Гепарансульфат – входит в состав протеогликанов базальных мембран. Структура дисахаридной единицы такая же как и у гепарина, но содержит больше N-ацетильных групп.
В межклеточном матриксе присутствуют разные протеогликаны. Среди них есть очень крупные – например агрекан и ворсикан. Кроме них, в межклеточном матриксе имеется целый набор так называемых малых протеогликанов, которые широко распространены в разных видах соединительной ткани и выполняют там разнообразные функции. Эти протеогликаны имеют небольшой коровый белок, к которому присоединены одна или две цепи гликозаминогликанов. Наиболее изучены декорин, бигликан, фибромодулин, люмикан, перлекан.
Протеогликаны отличаются от большой группы белков, которые называют гликопротеинами. Эти белки тоже содержат олигосахаридные цепи разной длины, ковалентно прикрепленные к полипептидной основе. Углеводный компонент гликопротеинов гораздо меньший по массе, чем у протеогликанов, и составляет не более 40% от общей массы.
Функции гликопротеинов:
структурные молекулы;
защитные (муцины, иммуноглобулины, антигены гистососместимости, комплимент, интерферон)
транспортные молекулы для витаминов, липидов, микроэлементов;
гормоны: тиротропин, хорионический гонадотропин;
ферменты (нуклеазы, факторы свертывания крови)
осуществление межклеточных контактов.
Метаболизм протеогликанов и гликопротеинов зависит от скорости их синтеза и распада. Их полипептидные цепи синтезируются на мембранносвязанных полирибосомах по матричному механизму синтеза. Полисахаридные цепи присоединяются к белку через связующую область, в состав которой чаще всего входит трисахарид галактоза-галактоза-ксилоза и соединяется с остатком серина корового белка.
Рисунок 34.2. Общая схема строения гликопротеинов.
Полисахаридные цепи синтезируются путем последовательного присоединения моносахаридов. Донорами моносахаридов обычно являются соответствующие нуклеотид-сахара. Реакции синтеза катализируются ферментами семейства трансфераз, обладающими абсолютной субстратной специфичностью. Эти трансферазы локализованы на мембранах аппарата Гольджи. Сюда по каналам эндоплазматической сети поступает коровый белок, к которому присоединяются моносахариды связующей области, и затем наращивается вся полисахариднакя цепь. Сульфатирование углеводной части происходит с помощью ФАФС.
На синтез гликозаминогликанов влияют глюкокортикоиды: они тормозят образование гиалуроновой кислоты и сульфатированных гликозаминогликанов. Показано также тормозящее действие половых гормонов в органах-мишенях.
Разрушение полисахаридных цепей осуществляется экзо- и эндогликозидазами и сульфатазами, к которым относят гиалуронидазу, глюкуронидазу, галактозидазу, нейраминидазу и другие лизосомальные гидролазы, обеспечивающие постепенное их расщепление до мономеров. Генетически детерминированный дефект указанных ферментов приводит к нарушению распада белково-углеводных комплексов и накоплению их в лизосомах. Развиваются мукополисахаридозы, проявляющиеся значительными нарушениями в умственном развитии, поражениями сосудов, помутнением роговицы, деформациями скелета.