Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
7 модуль / Lektsii_po_obschey_biokhimii_7_Krov_LPF_2013.doc
Скачиваний:
262
Добавлен:
07.06.2017
Размер:
1.6 Mб
Скачать

III. Α2-Глобулины

α2-Макроглобулиночень крупный белок (725 кДа), синтезируется в печени. Белок острой фазы (4 группа). В плазме 2,6 г/л. Главный ингибитор множество классов протеиназ плазмы, регулирует свертывание крови, фибринолиз, кининогенез, иммунные реакции. Уровень α2-макроглобулина в плазме уменьшается в острой фазе панкреатита и карциномы простаты, увеличивается - в результате гормонального эффекта (эстрогены).

Гаптоглобин– гликопротеид, синтезируется в печени. В плазме 1 г/л. Белок острой фазы (2 группа). Связывает гемоглобин с образованием комплекса, обладающего пероксидазной активностью, препятствует потери железа из организма. Гаптоглобин эффективно ингибирует катепсины С, В и L, может участвовать в утилизации некоторых патогенных бактерий.

Витамин Д связывающий белок (БСВ)(масса 70кДа). В плазме 0,4 г/л. Обеспечивает транспорта витамина Д в плазме и предотвращает его экскрецию с мочой.

 белок, связывающий витамин D (VDB; молекулярный вес = 51243 Да, позиция 17-474, 458 аминокислот, P02774 VTDB_HUMAN), или Gc-глобулин - многофункциональный белок сыворотки крови, синтезируемый в печени. Белок структурно связан с альбумином и имеет сравнимые размеры. Витамин D превращается в печени, а затем в почках в активные метаболиты, перенос которых к тканевым рецепторам витамина D осуществляется Gc-глобулином. Молекула Gc имеет один активный сайт, который связывает D2, D3 и их метаболиты. Преобладающее количество витамина D в крови циркулирует в связанном с VDB состоянии. Показано, что Gc-глобулин является фактором, стимулирующим макрофаги, обладает хемотаксической активностью и может связываться с эндотоксином. Кроме того, Gc-глобулин имеет один участок связывания с актином, образует комплексы с мономерным актином в соотношении 1:1 и тормозит полимеризацию G-актина в F-актин. Актин - внутриклеточный белок, который обладает способностью к полимеризации и может образовывать филаменты (нити). Подвижность и форма клеток зависят от этой способности. При массивном некрозе клеток и разрушении ткани, избыточное выделение актина может привести к существенному уменьшению количества внеклеточных компонентов актиновой системы (скавенджеров). In vivo Gc-глобулин действует как основной «сборщик» актина, возможно, защищая организм от повреждения после цитолиза. В большинстве популяций изменчивость гена Gc выявляется по двум аллелям – Gc2 и Gel. Показано, что при получении с пищей субоптимального количества эргокальциферола (D2) фенотипы Gc коррелируют с наличием или отсутствием рахита, особенно в популяциях с темным цветом кожи. Меланин препятствует проникновению в глубокие слои кожи ультрафиолетовых лучей, поэтому у людей с повышенной пигментацией возник компенсаторный механизм – гиперсекреция сальными железами эргосерина, который под действием ультрафиолетового облучения превращается в витамин D. Затем витамин D проникает вглубь кожи и, достигнув периферических капилляров, связывается с Gc-глобулином и транспортируется в ткани. Показано наличие корреляции между широтой местности, интенсивностью солнечной радиации и частотой аллеля Gc2. Причем географический показатель в большей степени коррелирует с частотой гетерозигот Gc2/1, т.е. в северных широтах гетерозиготы имеют селективные преимущества по сравнению с гомозиготами, по-видимому, за счет их больших адаптивных возможностей по отношению к экстремальным средовым факторам. Gc-актиновые комплексы обычно повышены в сыворотке беременных женщин и у больных с фульминантным некрозом печени. Повышенный уровень был найден у пациентов с гипофосфатемическим витамин D-резистентным и витамин D-зависимым рахитом, гипопаратиреоидизмом. Снижение уровня VDB было обнаружено в образцах сыворотки крови пациентов с высоким риском развития полиорганной недостаточности, например, с травмой, сепсисом и другими состояниями. Клиническое значение маркера: оценка риска развития полиорганной недостаточности при травме, нефротический синдром и др.

Церулоплазмин- главный медьсодержащий белок плазмы (содержит 95% меди в плазмы) с массой 150кДа, синтезируется в печени. В плазме 0,35 г/л. Т½=6 суток. Церулоплазмин обладает выраженной оксидазной активностью; ограничивает освобождение железа, активирует окисление аскорбиновой кислоты, норадреналина, серотонина и сульфгидрильных соединений, инактивирует активные формы кислорода, предотвращая ПОЛ.

Церулоплазмин - белок острой фазы (3 группа). Он повышается у больных с инфекционными заболеваниями, циррозом печени, гепатитами, инфарктом миокарда, системными заболеваниями, лимфогранулематозом, при злокачественных новообразованиях различной локализации (рак легкого, молочной железы, шейки матки, желудочно-кишечного тракта).

Болезнь Вильсона – Коновалова. Недостаточность церулоплазмина возникает при нарушении его синтеза в печени. При дефиците церулоплазмина Cu2+уходит из крови, выводятся с мочой или накапливается в тканях (например, в ЦНС, роговице).

Церулоплазмин - это широко распространенный α2-сывороточный гликопротеин, содержащий 95% меди, присутствующей в плазме позвоночных. Церулоплазмин является медь-связывающим белком, который в норме удаляет железо из клеток благодаря своей феррооксидазной активности. Концентрация церулоплазмина в среднем составляет 14.6 (±4.0) мг/дл. Низкий уровень церулоплазмина ведет к патологическому накоплению железа в клетках, включая клетки поджелудочной железы, печени, сетчатки и базальных ганглиев головного мозга. К заболеваниям, ассоциированным со сниженным уровнем церулоплазмина, относят болезнь Вильсона-Коновалова, гемохроматоз, болезнь Менкеса и ацерулоплазминемию.

Антитромбин III. В плазме 0,3 г/л.Антитромбин III действует как ингибитор свертывания крови и является важным индикатором риска образования тромба. Сообщается о снижении уровня антитромбина III при нарушениях функций печени у женщин, принимающих оральные контрацептивы. Низкий уровень антитромбина III также является наследственным аутосомным доминантным признаком

Ретинолсвязывающий белоксинтезируется в печени. В плазме 0,04 г/л. Связывает ретинол, обеспечивает его транспорт и предотвращает распад. Функционирует в комплексе с транстиретином. Ретинол связывающий белок фиксирует излишки витамина А, что предотвращает мембранолитическое действие высоких доз витамина.

Ретинол-связывающий белок (RBP) – низкомолекулярный (21 кДа) липокалин, содержащий 8 петель бета-складчатой структуры, специфически связывающий витамин А (ВА) и являющийся транспортным белком витамина A, образующий в крови комплексы с транстиретином/преальбумином, но теряющий свою аффинность к преальбумину после доставки витамина к клеткам-мишеням.

В крови более 90% ВА представлено ретинолом. Печень является не только основным депо ВА, но и главным местом синтеза RBP. Хотя другие ткани (включая жировую ткань, почки, легкие, сердце, скелетные мышцы, селезенку, глаза и тестикулы) также синтезируют этот глобулин. Биосинтез RBP в печени осуществляется на рибосомах. RBP в плазме связан с транстиретином, который функционирует как система транспорта ВА и предотвращает экскрецию RBP с мочой. Период полужизни RBP, связанного с транстиретином, составляет 12 ч, тогда как у свободного белка этот показатель равен 3,5 ч. Подобно другим маленьким белкам (например, β2-микроглобулину), свободные молекулы RBP быстро фильтруются в клубочке и катаболизируются в почечных канальцах после резорбции клетками проксимального отдела. При патологии канальцев эти белки не реабсорбируются и появляются в моче. Комплекс ВА с RBP имеет существенное физиологическое значение: RBP солюбилизирует гидрофобные молекулы ретинола и доставляет его из депо (печень) к органам-мишеням, предохраняет нестабильную свободную форму молекулы ретинола от химического распада (например, ретинол становится устойчивым к окислительному воздействию алкогольдегидрогеназы печени), защищает мембраны от токсического действия ВА. Интоксикация ВА развивается, когда ретинол в плазме и мембранах находится не в комплексе с RBP, а в другой форме. Сетчатка и другие ВА-зависимые ткани-мишени содержат цитозольные рецепторы для комплекса RBP-ВА. Концентрация RBP в плазме крови в нормальных условиях коррелирует с обеспеченностью организма ВА. RBP обычно насыщен на 75%. Депонирование ВА в печени осуществляется только при достаточном поступлении его с пищей и при нормальной концентрации ретинола в крови. Дефицит транспортных белков для ВА, развивающийся при белковой недостаточности, нарушает мобилизацию ретинола из депо и транспорт его к органам-мишеням. Недостаток белка и цинка в рационе уменьшают синтез RBP, оказывая тем самым отрицательное действие на мобилизацию ретинола из печени и выход его в кровь. В этой связи при белковой недостаточности нарушается утилизация даже имеющихся запасов ретинола и развивается так называемый белководефицитный функциональный гиповитаминоз А. Профилактика и лечение его должны проводиться при обязательной коррекции белкового состава рациона. Концентрация белка в плазме возвращается к нормальным величинам параллельно с эффективностью нутриционной поддержки. Скорость снижения в процессе недостаточности питания и скорость повышения при нутриционной поддержке зависит от периода полураспада белка. Хроническая интоксикация кадмием проявляется анемией, разрушением костной ткани и нередко сопровождается развитием прогрессирующего тубулоинтерстициального нефрита. В начале заболевания происходит выделение с мочой специфических низкомолекулярных белков, таких как β2-микроглобулины или RBP, а также кадмия, главным образом, в виде комплекса с белком металлотионенином, который захватывается почками и депонируется в органе (период полувыведения кадмия из организма человека составляет 10-20 лет). Механизм токсического действия металла окончательно не установлен. Дефицит цинка влияет на уровень кадмия и существенно повышает его токсичность. Рекомендуют определять в моче содержание двух видов протеинов, высокомолекулярного (например, альбумина), для распознавания гломерулярной патологии, и низкомолекулярного (например, β2-микроглобулин и RBP), для выявления повреждений проксимальных канальцев. У новорожденных с асфиксией уровень RBP в моче служит показателем, предвосхищающим развитие острой почечной недостаточности. Согласно опубликованным данным (например, Yang et al., 2005) ретинол-связывающий белок 4 (RBP4) играет ключевую роль в развитии инсулинорезистентности. RBP адипоцитов также модулирует гомеостаз глюкозы и снижает чувствительность к инсулину, и изменяет инсулинорезистентность. Повышение уровня RBP4 в сыворотке приводит к инсулинорезистентности, тогда как его снижение усиливает действие инсулина. Сделан вывод о том, что RBP4 изменяет чувствительность к инсулину, влияя на инсулиновый сигналинг в мышцах путем изменения количества фосфорилированного тирозина. Так, RBP4 может участвовать в патогенезе диабета 2 типа, и снижение уровня RBP4 может быть новой стратегией терапии этого заболевания. Показания: раннее обнаружение тубулярной протеинурии, хронические заболевания печени, почечные нарушения, связанные с отравлением Cd, исследование инсулинорезистентности.

Диспротеинемияза счет α2-глобулиной фракции может возникать при воспалении, т.к. в этой фракции содержатся белки острой фазы.