Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Electronics and nanoelectronics (2).docx
Скачиваний:
13
Добавлен:
06.06.2017
Размер:
35.75 Кб
Скачать

The future of nanotechnology electronics in medicine

Thanks to nanotechnologies, in particular nanoelectronics, the medical sector is about to undergo deep changes by exploiting the traditional strengths of the semiconductor industry – miniaturization and integration. While conventional electronics have already found many applications in biomedicine – medical monitoring of vital signals, biophysical studies of excitable tissues, implantable electrodes for brain stimulation, pacemakers, and limb stimulation – the use of nanomaterials and nanoscale applications will bring a further push towards implanted electronics in the human body.

A lot of nanotechnology work is going on in the area of brain research. For instance the use of a carbon nanotube rope to electrically stimulate neural stem cells; nanotechnology to repair the brain and other advances in fabricating nanomaterial-neural interfaces for signal generation.

A bit further out, and actually beyond the scope of medicine are efforts to build artificial brains – something that is called neuromorphic engineering: a new interdisciplinary discipline that includes nanotechnologies and whose goal is to design artificial neural systems with physical architectures similar to biological nervous systems.

As with many other areas of scientific endeavor in recent decades, continued progress will require the convergence of multiple disciplines, including chemistry, biology, electrical engineering, computer science, optics, material science, drug delivery, and numerous medical disciplines.

"Advances in this research could lead to extremely sophisticated smart materials with multifunctional capabilities that are built in – literally hard-wired. The impact of this research could cover the spectrum of biomedical possibilities from diagnostic studies to the creation of cyborgs."

However, future applications might see the integration of nanoscale sensors inside engineered living tissues that are integrated as closely as the nervous system is within native tissue. These embedded nanostructures could also serve as stimulators for the surrounding tissue or trigger the release of bioactive molecules stored in nearby nanocontainers. "Sensing and stimulation could be linked, creating closed-loop feedback systems that would be analogous to reflex arcs in the autonomic nervous system."

Nanotechnology and electronics

Nanotechnology is already being used by the electronic industry and you will be surprised to know that many of today’s electronics have already incorporated many applications that the nanotechnology science has developed. For example, new computer microprocessors have less than 100 nanometers (nm) features. Smaller sizes mean a significant increase in speed and more processing capability.

These advances will undoubtedly help achieve better computers. However, at some point in time (very near in the future) current electronic technology will no longer be enough to handle the demand for new chips microprocessors. Right now, the method for chip manufacturing is known as lithography or etching. By this technology, a probe literally writes over a surface the chip circuit. This way of building circuits in electronic chips has a limitation of around 22 nanometers (most advanced chip processors uses 60-70 nm size features). Below 22 nm errors will occur and short circuits and silicon limitations will prevent chip manufacturing.

Future

Nanotechnology may offer new ways of working for electronics. Nanotechnology science is developing new circuit materials, new processors, new means of storing information and new manners of transferring information. Nanotechnology can offer greater versatility because of faster data transfer, more “on the go" processing capabilities and larger data memories.

A new field is emerging in electronics that will be a giant leap in computer and electronics science. It is the field of quantum computing and quantum technology. Quantum computing is area of scientific knowledge aimed at developing computer technology based on the principles of quantum theory. In quantum computing the “qbit" instead of the traditional bit of information is used. Traditionally, a bit can assume two values: 1 and 0. All the computers up-to-date are based on the “bit" principle. However, the new “qbit" is able to process anything between 0 and 1. This implies that new types of calculations and high processing speeds can be achieved.

Соседние файлы в предмете Английский язык