- •Пожарная тактика
- •Введение
- •1. Пожар и понятие о нем
- •1.1. Фазы пожара
- •1.2. Зоны пожара
- •1. 3. Основные параметры пожара
- •Пожарная нагрузка
- •Скорость выгорания горючих веществ и материалов.
- •1.4. Классификация пожаров
- •2. Динамика развития пожаров в ограждениях
- •2.1. Взаимодействие пламени пожара с границами горящих помещений
- •Расстояние по радиусу от оси факела, м.
- •2.2. Развитие пожара до полного охвата пламенем закрытого помещения
- •2. 3. Направление распространения пламени на пожаре
- •Скорость распространения пламени по полоскам фильтровальной бумаги
- •Угол наклона поверхности ө, град.
- •2. 4. Газообмен на внутреннем пожаре
- •Момент вскрытия остекления
- •2. 5. Характерные схемы развития пожаров
- •3. Динамика развития пожаров на открытом пространстве
- •3.1. Открытые пожары и их отличительные особенности
- •3. 2. Динамика развития пожаров на газовых, газонефтяных и нефтяных фонтанах
- •3.3. Динамика развития пожаров в резервуарах с горячими жидкостями
- •Развитие пожара в обваловании.
- •Характеристика пожаров в резервуарах с горением выходящих паров в проемах
- •3. 4. Динамика развития пожаров на складах лесоматериалов
- •3. 5. Динамика развития лесных пожаров
- •Основные диагностические признаки для определения вида лесного пожара и его интенсивности
- •3. 6. Динамика развития торфяных и степных пожаров
- •4. Динамика развития пожаров на транспортных средствах
- •4. 1. Динамика развития пожаров на судах
- •4. 2. Динамика развития пожаров на самолетах и вертолетах
- •4. 3. Динамика развития пожаров на железнодорожном транспорте
- •4. 4. Динамика развития пожаров в метрополитене
- •4. 5. Динамика развития пожаров на автотранспорте
- •5. Динамика развития пожаров на объектах особой опасности для участников тушения пожаров
- •5.1. Динамика развития пожаров на объектах с хранением взрывчатых веществ (вв)
- •Поражение головы при тормозящем ударе
- •Критерии поражения при ударе какой – либо частью тела
- •Размеры опасных зон по воздействию опасных факторов на человека
- •5. 2. Динамика развития пожаров на энергетических объектах
- •Пожары в машинных залах
- •Пожары в кабельном хозяйстве.
- •Пожары на силовых трансформаторах и распределительных устройствах
- •Пожары в отделении ядерного реактора аэс
- •5. 3. Динамика развития пожаров на объектах с наличием активных химически опасных веществ (ахов)
- •6. Процесс тушения пожара
- •6.1. Тактико-технические действия на пожаре
- •6. 2. Решающее направление на пожаре
- •Принципы выбора решающего направления тактико-технических действий:
- •6. 3. Ограничение распространения пожара
- •7. Прием сообщений. Обработка вызовов
- •8. Выезд и следование на пожар
- •Пути снижения времени сосредоточения сил и средств:
- •9. Разведка пожара
- •9.1. Общие положения
- •Основные задачи разведки пожара:
- •9. 2. Организация и способы ведения разведки
- •9. 3. Способы выявления обстановки на пожаре
- •9. 4. Тактические возможности пожарных подразделений при использовании индивидуальных средств защиты
- •Факторы, снижающие тактические возможности пожарных подразделений при работе в сизод
- •Допустимое время работы пожарных–газодымозащитников в сизод в зависимости от температуры и влажности воздуха
- •Допустимое время работы в сизод при низкой температуре
- •Расчет параметров работы в кислородных изолирующих противогазах
- •Расчет параметров работы в дыхательных аппаратах
- •Оценка степени тяжести некоторых видов работ и упражнений
- •9. 5. Выводы по разведке на пожаре
- •10. Приведение сил и средств в состояние готовности
- •10. 1. Общие положения
- •10. 2. Развертывание сил и средств в зданиях
- •10. 3. Особенности развертывания сил и средств на объектах с электроустановками
- •10. 4. Особенности развертывания сил и средств в условиях низких температур
- •10. 5. Особенности развертывания сил и средств в условиях высоких температур
- •Допустимая высота всасывания
- •10. 6. Развертывание сил и средств при неудовлетворительном водоснабжении и на безводных участках
- •Подача огнетушащих веществ перекачкой
- •Схемы перекачки воды и краткая тактико-техническая оценка
- •Подвоз воды автоцистернами
- •Последовательность решения задачи
- •10.7. Насосно-рукавные системы для подачи раствора пенообразующих веществ в воде
- •10. 8. Тактические возможности пожарных подразделений по развертыванию сил и средств.
- •Время установки пожарного автомобиля на водоисточник (τ в), с
- •Значение 1 зв, м
- •Коэффициент, учитывающий влияние температуры окружающей среды, Кt
- •Коэффициент, учитывающий время суток, Кт
- •Коэффициент, учитывающий покрытие участка местности, Км.
- •Коэффициент, учитывающий влияние снежного покрова, Кс
- •Масса пожарно-технического вооружения, кг
- •10. 9. Понятие оптимальности насосно-рукавных систем
- •11. Организация спасательных работ на пожаре
- •11. 1. Средства и способы спасания людей на пожаре
- •Результаты экспериментов по проведению спасательных работ по лестничным маршам (высота этажа 3м)
- •Обобщенные данные по спасанию людей с помощью спасательной веревки
- •Зависимость времени спасания по лестничному маршу от веса спасаемого
- •Обобщенные данные по спасению людей (выносом) по маршу лестничной клетки
- •11. 2. Тактика спасания людей на пожарах
- •11. 3. Технология спасательных работ в подземных сооружения метрополитена
- •11. 4. Эвакуация людей из воздушного судна
- •11. 5. Методика расчета сил и средств для спасания людей в зданиях и сооружениях
- •Пропускная способность средств спасания
- •Спасание людей выносом на руках.
- •Коэффициенты трения спасательной веревки по стальному карабину
- •11. 6. Спасание животных
- •12. Огнетушащие вещества и средства их подачи
- •12. 1. Условия и способы прекращения горения
- •12. 2. Огнетушащие вещества охлаждения
- •Рекомендуемые концентрации смачивателей
- •12. 3. Огнетушащие вещества изоляции
- •Типы применяемых пенообразователей и их параметры
- •Огнетушащие свойства различных видов пенообразователей
- •Огнетушащие порошки
- •Основные показатели качества огнетушащих порошков специального назначения
- •12. 4. Огнетушащие вещества разбавления
- •Нейтральные газы (нг):
- •Химически активные ингибиторы (хаи):
- •Огнетушащие составы на базе галоидоуглеводородов, не влияющих на озоновый слой земли
- •Физические свойства газовых огнетушащих составов
- •Аэрозолеобразующие огнетушащие составы
- •12. 5. Интенсивность подачи и удельный расход огнетушащих веществ
- •12. 6. Технические средства подачи огнетушащих веществ
- •Основные показатели мониторов
- •13. Подача огнетушащих веществ на ликвидацию горения и защиту
- •13.1. Общие основы подачи огнетушащих веществ
- •13. 2. Технология работы с пожарными стволами
- •Особенности действий ствольщиков в различных условиях на пожаре
- •13. 3. Подача огнетушащих веществ на ликвидацию горения в культурно-зрелищных учреждениях
- •13. 4. Подача огнетушащих веществ при ликвидации горения газонефтяных фонтанов
- •Подача газоводяных струй от автомобиля агвт- 100(150)
- •Тактико-техническая характеристика агвт
- •Предельный дебит горящего фонтана, млн. М3/сут, который может один агвт
- •Особенности тушения фонтанов на море
- •Особенности тушения фонтанов на кустах скважин.
- •13. 5. Подача огнетушащих веществ на ликвидацию горения на объекты с наличием электроустановок
- •Виды огнетушителей, применяемые для тушения оборудования, находящегося под напряжением
- •Минимальные безопасные расстояния от горящих электроустановок под напряжением при подаче огнетушащих веществ из ручных стволов
- •Подача огнетушащих веществ на ликвидацию горения в машинных залах
- •13. 6. Подача огнетушащих веществ на ликвидацию горения истекающих горючих жидкостей и газов из трубопроводов и аппаратов
- •Характеристика распылителей
- •Удельный расход различных огнетушащих веществ, кг/кг
- •13.7. Подача огнетушащих веществ на ликвидацию горения горючих жидкостей в резервуарах
- •Нормативные интенсивности подачи пены средней кратности для тушения пожаров нефти и нефтепродуктов резервуарах
- •Нормативная интенсивность подачи пены низкой кратности для тушения нефти и нефтепродуктов в резервуарах
- •Данные по охлаждению горящих и соседних резервуаров
- •Особенности подачи огнетушащих веществ в резервуары при возникновении нестандартных ситуаций
- •Ликвидация горения в резервуарах в условиях низких температур.
- •13. 8. Подача огнетушащих веществ на ликвидацию горения лесоматериалов
- •13. 9. Подача огнетушащих веществ на ликвидацию горения на сельскохозяйственных объектах
- •Подача огнетушащих веществ для ликвидации горения на складах ядохимикатов и удобрений
- •13. 10. Подача огнетушащих веществ на ликвидацию горения в складах взрывчатых веществ
- •13. 11. Подача огнетушащих веществ на ликвидацию горения воздушных судов
- •13. 12. Подача огнетушащих веществ для ликвидации горения на морских и речных судах
- •13. 13. Подача огнетушащих веществ на ликвидацию горения объектов подвижного состава железнодорожного транспорта
- •13. 14. Подача огнетушащих веществ на ликвидацию горения на объектах метрополитена
- •13. 15. Тактические возможности пожарных подразделений при подаче огнетушащих веществ
- •Тактические возможности подразделений при установке автомобилей на водоисточники
- •13. 16. Расчет сил и средств для тушения пожаров
- •14. Выполнение специальных работ на пожаре
- •14. 1. Вскрытие и разборка конструкций
- •14. 2. Тактические возможности пожарных подразделений по вскрытию и разборке конструкций
- •14. 3. Эвакуация материальных ценностей
- •14. 4. Регулирование газообмена на пожаре
- •14. 5. Дымоудаление при пожарах в подземных сооружениях метрополитенов
- •15. Сбор и возвращение подразделений в места постоянной дислокации
- •16. Управление силами и средствами на пожаре
- •16. 1. Органы управления силами и средствами на пожаре
- •16. 2. Роль и задачи ртп в управлении силами и средствами на пожаре
- •16.3. Оперативный штаб на пожаре и его роль в управлении силами и средствами на пожаре
- •16. 4. Участки выполнения работ на пожаре
- •16. 5. Техническое обеспечение и условные обозначения органов управления на пожаре
- •Организация связи на пожаре в метро.
- •16. 6. Функции органов управления силами и средствами на пожаре
- •16. 7. Сбор и обработка данных оперативной обстановки на пожаре
- •16. 8. Принятие решения на тушение пожара
- •16. 9. Доведение задач до подчиненных
- •16. 10. Организация взаимодействия подразделений и служб на пожаре
- •16. 11. Контроль подготовки к тактико-техническим действиям на пожаре
- •Оперативно-служебная документация на пожаре
- •16. 13. Обеспечение готовности сил и средств управления
- •16. 14. Задачи и направления совершенствования управления силами и средствами на пожаре
- •16. 15. Автоматизация как направление дальнейшего совершенствования управления силами и средствами на пожаре
- •17. На пожаре необходимо: (в качестве выводов)
- •Организовать подачу огнетушащих веществ.
- •Снизить воздействие опасных факторов пожара.
- •18. Нормирование труда сотрудников силами и средствами на пожаре
- •18. 1. Методика нормирования труда сотрудников управления силами и средствами на пожаре
- •18. 2. Оценка затрат времени на управление силами и средствами на пожаре
- •Литература:
- •Приложения
- •Описание
- •Допускаемые сокращения при ведении служебной документации
- •Расход воздуха и удельный объем продуктов сгорания при горении некоторых веществ и материалов (при 0°с и нормальном давлении)
- •Линейные скорости распространения горения при пожарах на различных объектах
- •Интенсивность подачи воды при тушении пожаров
- •Параметры выгорания твердых материалов
- •Ориентировочная температура пожара при горении различных материалов
- •Воздействие теплового излучения на человека
- •Концентрации смачивателей в воде
- •Концентрация рабочих растворов пенообразователей при различной жесткости воды
- •Расход воды из пожарных стволов
- •Характеристики гпс
- •Микроэлементные нормативы скор движения руки (рук), пальцев, кисти
- •4. 1. 3 Прилагаемое усилие
- •4. 1. 4. Движения корпуса
- •4. 1. 5 Движения ног
- •4. 1. 6 Умственно-зрительная деятельность
- •4. 1. 7 Св—прием и передача информации
- •4. 1. 8 Заполнение документации
2. 5. Характерные схемы развития пожаров
Рассмотрим зависимость интенсивности развития пожара от вида и характера пожарной нагрузки, состояния горючих материалов и некоторых их специфических особенностей. Если горючий материал, составляющий пожарную нагрузку, однороден (например, древесина, кипы бумаги) и равномерно размещен по площади пола, и если в помещении нет ориентированных газовых потоков, то процесс горения будет распространяться равномерно во все стороны, будет иметь форму, близкую к круговой. Чем больше скорость линейного распространения пламени, тем выше скорость роста площади пожара; чем выше теплота сгорания данного материала, тем больше скорость роста интенсивности тепловыделения на пожаре, выше скорость роста температуры пожара; чем мельче частицы материала (больше дисперсность), тем больше скорость выгорания его. Чем менее компактно уложен материал, тем больше коэффициент поверхности горения КП, тем больше поверхность нагревания горючего материала, легче поступает воздух в зону горения и интенсивнее выходят летучие фракции из горючего материала и тем, соответственно, выше скорость линейного распространения пожара и т.д.
Но поскольку неизвестно истинное значение зависимости скорости распространения пожара во времени, то в расчетные формулы для определения площади пожара в начальной стадии его развития и после введения первых стволов на ликвидацию горения вводят поправочный коэффициент скорости распространения пожара: а<1.
Условно
а принят равным 0,5. Также условно принято,
что этот коэффициент в формулу
вводится
для расчета площади пожара в первые 10
минут развития пожара и после введения
первых стволов, независимо от того,
насколько
и
соответствует
и
(фактические
и требуемые интенсивности подачи и
расходы огнетушащих веществ).
Эти взаимосвязи просматриваются при принятых ранее условиях: однородной пожарной нагрузке; равномерном ее расположении в горизонтальной плоскости; отсутствии ярко выраженных других факторов, влияющих на скорость и направление развития пожара (при равномерном и однородном поле температур, отсутствии внешних принудительных газовых потоков и др.).
Если
пожарная нагрузка неоднородна, то
распространение и развитие пожара
существенно изменится. В характере
процесса горения появится доминирующее
направление распространения
. Этот фактор
и будет определять направление и скорость
распространения процесса горения, а
стало быть, величину и форму площади
пожара, и все остальные параметры
динамики его развития.
То
же самое произойдет в случае, если
однородная пожарная нагрузка размещена
неравномерно. Особенно если часть ее
расположена горизонтально (т.е. размещена
в плоскости пола или на некотором уровне
от пола), а значительная часть ее размещена
вертикально (обшивка стен горючими
материалами, картины, занавеси, стеллажное
хранение горючих материалов, и др.). При
прочих равных условиях доминирующим
направлением распространения процесса
горения станет вертикальное. Причем
может быть в
2-3 раза больше, чем
.
Рассмотрим некоторые простейшие схемы распространения и развития пожара, когда пожарная нагрузка неоднородна или размещена неравномерно:
- Пожарная нагрузка неоднородна. Таких вариантов множество. Одного и того же вида пожарная нагрузка неравномерно размещена (рис. 2.16.). При разнородной пожарной нагрузке (рис. 2.17.) пожар будет распространяться быстрее и интенсивнее по более легкогорючим материалам. Если пожарная нагрузка размещена неравномерно и различается по структуре (рис. 2.18.), в реальных условиях процесс горения будет распространяться неравномерно и по направлению, и по скорости.
- Пространственное размещение однородной и неоднородной пожарной нагрузки. При пространственном (наиболее реальном) размещении однородной пожарной нагрузки преимущество распространения пожара будет определяться направлением действия сил конвекции. Примером может служить распространение пожара в высотных зданиях и высокостеллажных складах (рис. 2.19.).
Известно, что, когда вектор распространения горения совпадает с вектором конвективных потоков, скорость распространения горения увеличивается в 2-3 раза и более. И наоборот, если направление вектора распространения горения не совпадает с вектором конвективных потоков, скорость распространения горения начинает убывать и в пределе может стать равной нулю.

Рис. 2. 16. Схема распространения пожара при неравномерном размещении пожарной нагрузки

Рис. 2. 17. Схема распространения пожара при разнородной пожарной нагрузке.
Еще больше усложнится и задача прогнозирования обстановки на пожаре, если в зоне горения находятся неоднородные горючие вещества и материалы. Например, если в книгохранилище по полу выстлана ворсистая ковровая дорожка из синтетического материала, то пламя распространяется по ней, как по «пороховой дорожке», как по специальному пламяпроводу (рис. 2.20.). Тогда, по законам действия конвективных газовых и тепловых потоков, пламя по стеллажу пойдет вверх, а по легкогорючей и легковоспламенимой ковровой дорожке распространяется до противоположной стены книгохранилища. Если стеллажи по торцам отделаны декоративным легковоспламенимым и быстрогорящим пластиком, лаком, масляной краской и другими горючими покрытиями, то по ним пламя будет распространяться еще быстрее.

Рис. 2. 18. Схема распространения пожара, когда пожарная нагрузка размещена неравномерно и различается по структуре

Рис. 2. 19. Схема распространения пожара в высокостеллажных складах.
Распространение пожара по этим видам горючих материалов вверх и в направлении их размещения будет еще интенсивнее, а задача правильного расчета и прогнозирования направлений и скорости развития пожара еще сложнее. И тем не менее, уметь хотя бы приблизительно оценивать направление и интенсивность развития пожара в реальных условиях крайне необходимо. Необходимо это и инженерам-конструкторам и проектировщикам, разрабатывающим автоматические системы сигнализации о пожаре и системы автоматического пожаротушения, а также оперативным работникам пожарной охраны.
При
возникновении пожара в складе у основания
стеллажей уже через 3 мин скорость его
распространения достигает 10 м/мин.
Увеличение высоты стеллажей с 2,5 м до 5
м повышает интенсивность тепловыделения
в 9-10 раз, а поскольку в этих условиях
она пропорциональна интенсивности
выгорания пожарной нагрузки, значит, и
скорость выгорания возрастает более
чем в 10 раз. Локальная температура под
крышей уже через 3-5 мин достигает 870 °С
(а прочность металлических конструкций
резко снижается при
350-400 °С, и при
450°С происходит потеря устойчивости).

Рис. 2. 20. Схема распространения пожара при наличии отделочных и декоративных материалов.
Динамика распространения и развития пожара во многом зависит от интенсивности газообмена. Искусственные и естественные газовые потоки, существующие в зданиях и помещениях, а особенно естественные конвективные потоки, возникающие при пожарах, существенно влияют не только локально на процессы горения в зоне уже распространяющегося факела пламени, но и определяют весь ход развития и распространения пожара в целом.
Увеличение скорости распространения горения с ростом скорости попутных газовых потоков, приводящее к двух-, трехкратному увеличению линейной скорости распространения пожара и скорости распространения процессов горения вверх по направлению конвективных газовых потоков, приводит к резкой интенсификации пожаров на таких объектах, как: театры, высотные здания, туннели, шахты, ангары, выставочные павильоны, высокостеллажные склады, и т.п. Эти воздушные потоки, резко интенсифицируя динамику пожаров, создавая неожиданные, иногда трудно поддающиеся учету и прогнозированию, направления интенсивного распространения пожара, сильно осложняют обстановку на пожаре. При этом, опасность распространения пожара по вентиляционным каналам и лифтовым шахтам, по лестничным клеткам и коммуникациям, по покрытиям больших площадей и другим конструктивным элементам зданий возрастает.
Нередко на направление и интенсивность распространения пожара решающее влияние оказывают даже такие непредвиденные обстоятельства, как изменения агрегатного состояния горючих материалов. К ним относится растекание расплавленных горящих масс горючих веществ, которые при нормальных условиях являются твердыми материалами, например, проникновение и развитие пожара внутрь здания при горении покрытий больших площадей. Расплавленные смолы, битум, пенополистирол или пенополиуретан горят и стекают через неплотности в покрытии, что является причиной пожара внутри зданий и помещений (рис. 2.21.).
Знание всех этих особенностей необходимо для правильной оценки обстановки на пожаре. И в первую очередь, это необходимо знать РТП, в задачи и обязанности которого входит, проводя разведку пожара, достаточно точно прогнозировать обстановку на пожаре, определить решающее направление и характер тактико-технических действий, количество и положение отдельных участков тактико-технических действий и их задачу, необходимость вызова дополнительных сил и средств и т.д.
- Распространение пожара за пределы одного помещения. Как известно, реальные пожары сравнительно редко ограничиваются зоной их первоначального возникновения. Если не будут приняты специальные активные меры по их локализации и тушению, то через некоторое время, после разрушения остекления, прогорания дверей, изолирующих перегородок, перекрытий или по другим каналами коммуникациям, пожар перебрасывается за пределы одного помещения и начинает интенсивно распространяться дальше.

Рис. 2. 21. Схема перехода пожара извне внутрь помещения.
Раньше всего пламя пожара выходит за пределы помещения, где оно первоначально возникло, через оконные проемы, если дверь помещения была при этом плотно закрыта. Это происходит потому, что остекление окон, как правило, разрушается при среднеобъемной температуре пожара 250-300ºС (т.е. через 10-15 мин после начала пожара); а, при недостатке воздуха в зоне горения, который обычно имеет место при внутренних пожарах, эти горючие газы сгорают за пределами помещения, в оконных проемах и над ними. Языки пламени из окна с разрушившимся остеклением вместе с горячими продуктами горения устремляются вверх и достигают оконных переплетов верхних этажей, которые могут воспламениться (рис. 2.22.)
При очень интенсивном горении пожар может переброситься на расположенное вблизи здание по механизму передачи лучистой энергии или от искр и головней (рис. 2.23.).
Еще более естественным и опасным путем распространения пожара за пределы помещения, где он первоначально возник, являются дверные проемы, если дверь в момент возникновения пожара не была закрыта или если она самопроизвольно открылась под действием избыточного давления газовой среды в горящем помещении. Даже если дверь плотно закрыта, это одно из слабых мест в отношении опасности распространения пожара за пределы горящего помещения, так как огнестойкость дверей, как правило, сравнительно мала и составляет 10-15 мин, а иногда и 4-5 мин. Огнестойкость двери зависит от конструкции материала, из которого она изготовлена, от режима горения в помещении, а также от характера размещения пожарной нагрузки и относительного расположения первоначального очага пожара.

Рис. 2. 22. Схема перехода Рис. 2. 23. Схема распростра -
пожара с нижних этажей нения пожара при интенсивном
на верхние. излучении.
Если
очаг пожара расположен далеко от двери,
то до начала ее загорания она будет
испытывать в течение некоторого времени
более или менее интенсивное тепловое
воздействие процесса горения внутри
помещении. Поэтому она будет разогрета
и подготовлена к горению. Кроме того,
когда пламя достигнет двери и начнется
процесс ее горения, он будет протекать
под интенсивным воздействием лучистого
теплового потока от зоны горения,
расположенной внутри помещения. Поэтому
огнестойкость двери, как огнепреграждающей
конструкции, с момента ее воспламенения,
будет минимальна, она прогорит быстро,
и пламя пожара (а также продукты полного
и неполного горения) начнет распространяться
на смежные помещения. Но с момента начала
пожара это произойдет не сразу, а через
более или менее продолжительный
промежуток времени (складывающийся из
времени, за которое пламя пожара достигнет
двери и времени, за которое прогорит
сама дверь). Если же очаг пожара находится
в непосредственной близости от двери,
например, при загорании бумаги и мусора
в урне, стоящей под дверью, она загорится
практически сразу, как только ее
поверхность прогреется до температуры
начала пиролиза древесины (
250°С).
А окрашенная краской или оклеенная
горючими синтетическими декоративно-отделочными
материалами дверь загорится еще раньше.
При этом огнестойкость двери будет даже
выше, чем в предыдущем случае. Но пожар
выйдет за пределы горящего помещения
еще быстрее, чем в первом случае.
Другой путь распространения пожара за пределы помещения- это переход горения через вертикальные и горизонтальные ограждающие конструкции (рис.2.24.). По вертикальным ограждающим конструкциям пожар может интенсивно распространяться с обогреваемой стороны в пределах того же помещения, если эти конструкции покрыты горючими, а тем более легковоспламеняемыми декоративно-отделочными синтетическими материалами. Если же ограждающие конструкции обладают низкой огнестойкостью и способны прогореть или частично разрушиться под воздействием пламени или высоких температур на обогреваемой пожарной нагрузке. Такими конструкциями являются переборки в судовых каютах, лабораторные боксы, перегородки, смонтированные из металлических сборных или сварных элементов, и т.д.

Рис. 2. 24. Схема распространения пожара за пределы помещения через ограждающие конструкции.
Через горизонтальные ограждающие конструкции пожар может распространиться через перекрытия на этажи здания, расположенные выше горящего помещения. Пожар лишь в редких случаях переходит через перекрытие на этажи, расположенные ниже горящего помещения. Чаще всего он распространяется в верхние этажи.
Наиболее опасными путями распространения пожара на верхние этажи здания являются различные пустоты в строительные конструкциях, вентиляционные и кабельные каналы и т.п. Продукты неполного сгорания, интенсивно выделяющиеся в горящем помещении, по законам естественной конвекции устремляются по таким каналам вверх. Скопление их с последующим внезапным воспламенением может вызвать даже взрыв с разрушением элементов конструкции здания и выбросом пламени.
При этом не исключено, что несгоревшие летучие продукты при их перемешивании с воздухом могут энергично сгорать, быть может, в местах, весьма отдаленных от места, где возник пожар, например, в том месте, где коридор переходит в лестничную клетку.
На стадии развившегося пожара в зданиях, после окончания фазы распространения, факел выбрасывается из оконных проемов. Наиболее устойчивый по времени факел в момент максимальной интенсивности пожара в среднем достигает половины высоты расположенного выше этажа. Поэтому за расчетную высоту факела при пожаре на одном этаже следует брать высоту фасада от подоконника горящего этажа до середины следующего этажа.
Площадь поверхности факела зависит от числа и размеров оконных проемов на каждом этаже, из которых выбрасывается пламя. Обычно пожар развивается в пределах одной секции жилого дома или противопожарного отсека промышленного (складского) здания. При коридорной системе пожар может развиться в пределах всего этажа, а затем охватить все здание.
С усилением скорости ветра в наветренной стороне оконных проемов горящего помещения, при наличии открытых проемов на подветренной стороне здания, пожар становится еще более интенсивным в результате увеличения разности давлений снаружи и внутри здания. Увеличивается скорость движения газовых потоков внутри здания как в вертикальной, так и в горизонтальной плоскостях. Поэтому вскрытие оконных проемов для удаления дыма и нагретых газов допускается только в пределах горящего этажа с подветренной стороны здания при одновременной подаче мощных стволов в очаг пожара и на защиту выше расположенных этажей, а также путей эвакуации.
