Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
кср 2 физика-1.doc
Скачиваний:
10
Добавлен:
21.04.2017
Размер:
264.7 Кб
Скачать

Кср 2. Физика. Реальные газы и жидкости.

1. Силы взаимодействия между молекулами. Межмолекулярное взаимодействие, взаимодействие между электрически нейтральными молекулами или атомами; определяет существование жидкостей и молекулярных кристаллов, отличие реальных газов от идеальных и проявляется в разнообразных физических явлениях. Впервые Межмолекулярное взаимодействие принял во внимание Я. Д. ван дер Ваальс (1873) для объяснения свойств реальных газов и жидкостей. Межмолекулярное взаимодействие имеет электрическую природу и складывается из сил притяжения (ориентационных, индукционных и дисперсионных) и сил отталкивания. Межмолекулярное взаимодействие зависит от расстояния r между молекулами и, как правило, описывается потенциальной энергией взаимодействия U(r) (потенциалом Межмолекулярное взаимодействие)

Ориентационные силы Ориентационные силы действуют между полярными молекулами, то есть обладающими дипольными электрическими моментами. Сила притяжения между двумя полярными молекулами максимальна в том случае, когда их дипольные моменты располагаются вдоль одной линии. Эта сила возникает благодаря тому, что расстояния между разноимёнными зарядами немного меньше, чем между одноимёнными. В результате притяжение диполей превосходит их отталкивание. Хаотическое тепловое движение непрерывно меняет ориентацию полярных молекул, но, как показывает расчёт, среднее по всевозможным ориентациям значение силы имеет определённую величину, не равную нулю. Потенциальная энергия ориентационного межмолекулярного взаимодействия: . Соответственно, сила взаимодействия: For˜r − 7. Сила For убывает с расстоянием значительно быстрей, чем кулоновская сила взаимодействия заряженных тел.

Индукционные силы Индукционные (или поляризационные) силы действуют между полярной и неполярной молекулами. Полярная молекула создаёт электрическое поле, которое поляризует молекулу с электрическими зарядами, равномерно распределёнными по объёму. Индукционные силы (Find˜r − 7) действуют также и между полярными молекулами.

Дисперсионные силы Между неполярными молекулами действует дисперсионное межмолекулярное взаимодействие. Природа этого взаимодействия была выяснена полностью только после создания квантовой механики. В атомах и молекулах электроны сложным образом движутся вокруг ядер. В среднем по времени дипольные моменты неполярных молекул оказываются равными нулю. Но в каждый момент электроны занимают какое-то положение. Потенциальная энергия дисперсионного межмолекулярного взаимодействия: где a1,a2 — поляризуемости взаимодействующих молекул. а дисперсионная сила: Fdisp˜r − 7.

Силы отталкивания Силы отталкивания действуют между молекулами на очень малых расстояниях, когда приходят в соприкосновение заполненные электронные оболочки атомов, входящих в состав молекул. Существующий в квантовой механике принцип Паули запрещает проникновение заполненных электронных оболочек друг в друга. Возникающие при этом силы отталкивания зависят в большей степени, чем силы притяжения, от индивидуальности молекул. К хорошему согласию с данными экспериментов приводит допущение, что потенциальная энергия сил отталкивания возрастает с уменьшением расстояния по закону: Urep(r)˜r − 12,

а собственно величина силы: Frep˜r − 13.

Рассчитать с достаточной точностью U(r) на основе квантовой механики при огромном разнообразии пар взаимодействующих молекул практически нельзя. Не удаётся пока и экспериментально измерить силу взаимодействия на межмолекулярных расстояниях.

2. Уравнение состояния газа Ван-дер-Ваальса — уравнение, связывающее основные термодинамические величины в модели газа Ван-дер-Ваальса.

Хотя модель идеального газа хорошо описывает поведение реальных газов при низких давлениях и высоких температурах, в других условиях её соответствие с опытом гораздо хуже. В частности, это проявляется в том, что реальные газы могут быть переведены в жидкое и даже в твёрдое состояние, а идеальные — не могут.

Для более точного описания поведения реальных газов при низких температурах была создана модель газа Ван-дер-Ваальса, вводящая поправку на конечный диаметр молекулы и на притяжение молекул на больших расстояниях, тогда как в идеальных газах частицы считаются точечными и никак не взаимодействуют на расстоянии.

Термическим уравнением состояния (или, часто, просто уравнением состояния) называется связь между давлением, объёмом и температурой.

Для одного моля газа Ван-дер-Ваальса оно имеет вид:

где

p — давление,

V — объём,

T — абсолютная температура,

R — универсальная газовая постоянная.

Видно, что это уравнение фактически является уравнением состояния идеального газа с двумя поправками. Поправка a учитывает притяжение молекул, поправка b — объём занимаемый молекулами.

Для ν молей газа Ван-дер-Ваальса уравнение состояния выглядит так:

3. переход из газообразного состояния в твердое и жидкое

Переход вещества из жидкого состояния в газообразное называется парообразованием. Обратный переход газа в жидкое состояние есть сжижение.

Переход из твердого состояния в газообразное определяется как возгонка или сублимация. Обратный переход из газообразного состояния в твердое именуется десублимацей.

Переход газообразного вещества в жидкое или твердое состояние (сжижение и десублимация) объединяются общим понятием конденсация пара. Всвязи с этим твердое и жидкость рассматриваются как конденсированное состояние. Конденсация — переход воды из газообразного в жидкое состояние. Конденсация начинается, если воздух достигает насыщения, а это чаще всего происходит в атмосфере при понижении температуры. Водяной пар с понижением температуры до точки росы достигает состояния насыщения.

Десублимация (Депозиция) - физический процесс перехода вещества из газообразного состояния в твёрдое, минуя жидкое. Обратным процессом является возгонка (сублимация). Примером десублимации является образование на стёклах ледяных узоров в зимнее время. При десублимации высвобождается энергия. Модель идеального газа не предполагает превращения газа в жидкость при постоянной температуре. Однако, реальные газы, в которых взаимодействием между молекулами пренебречь нельзя, способны при изменении давления превращаться в жидкость, если их температура ниже некоторой критической Tкр.  Если количество молекул, покидающих жидкость, равно количеству молекул, возвращающихся в жидкость, то говорят, что наступило динамическое равновесие между жидкостью и ее паром. Пар, находящийся в динамическом равновесии со своей жидкостью, называется насыщенным.Абсолютная влажность воздуха ρ показывает плотность водяного пара. Относительной влажностью воздуха φ называют отношение абсолютной влажности воздуха ρ к плотности ρ0 насыщенного водяного пара при той же температуре, выраженное в процентах:

Температура, при которой пар, находящийся в воздухе, становится насыщенным, называется точкой росы.

Соседние файлы в предмете Физика