- •Вопрос 1. Со и ск. Основные хар-ки мех-го движения. Прямолинейные и криволинейныое движение мт. Скорость и ускорение.
- •Вопрос 2. Движение мт по окружности. Нормальное и тангенциальное ускорение. Связь угловых и линейных хар-к движения.
- •Вопрос 3. Векторные величины. Сложение, вычитание и умножение векторов. Сила и масса. Законы Ньютона.
- •Вопрос 4. Силы при криволинейном движении.
- •Вопрос 5. Закон всемирного тяготения. Зависимость веса тела от высоты над уровнем моря и геог-кой широты. Гравитационное поле.
- •Вопрос 6. Нормальное гравитационное поле и его аномалии.
- •Вопрос 7. Гравитационные явления и процессы.
- •Вопрос 8. Орбитальное движение Земли и ее осевое вращение. Неравномерности вращения Земли и их физическая природа.
- •Вопрос 9. Приливообразующие силы и их геофизическая роль.
- •Вопрос 10. Закон сохранения и изменения количества движения.
- •Вопрос 11. Работа силы и мощность. Кинетическая и потенциальная энергия.
- •2) Потенциальная энергия тела массы m, находящегося в гравитационном поле другого тела массой м на расстоянии r0 от него.
- •3) Определим потенциальную энергию тела массой m, находящегося на небольшой высоте h над земной поверхностью.
- •Вопрос 12. Гармоническое колебание и его хар-ки. Маятники.
- •Вопрос 13. Энергия колеблющегося тела. Собственные колебания Земли. Сложение гармонических колебаний.
- •Вопрос 14. Волна и ее хар-ки. Продольные и поперечные волны. Принцип Гюйгенса. Интенсивность волны.
- •Вопрос 15. Звуковая волна. Хар-ки звука. Инфразвук и ультразвук. Принцип локации.
- •Вопрос 16. Элементы механики жидкости. Основные определения. Уравнение неразрывности.
- •Вопрос 17. Уравнение Бернулли и его применение для определения статического и динамического давления.
- •Вопрос 18. Основные положения мкт строения вещества. Межмолекулярные силы. Агрегатное состояние вещества.
- •Вопрос 19. Макроскопические системы. Термодинамическое равновесие. Равновесные и неравновесные процессы. Обратимые и необратимые процессы.
- •Вопрос 20. Газовые законы (Бойля-Мариотта, Гей-Люсака, Авогадро). Уравнение состояния идеального газа.
- •Вопрос 21. Барометрическая формула и распределение Больцмана.
- •Вопрос 22. Явления переноса в газах и жидкостях.Диффузия в газах.
- •Вопрос 23. Явление переноса. Телопроводность.
- •Вопрос 24. Явления переноса в газах и жидкостях. Внутреннее трение (вязкость).
- •Вопрос 44. Мпз. Магнитные полюса Земли. Элементы земного магнетизма. Магнитные карты изогон, изоклин и изодин.
- •Вопрос 45. Межпланетное мп. Солнечный ветер. Магнитосфера Земли. Радиационные пояса Земли.
- •Вопрос 46. Природа геомагнитного поля. Источники энергии геомагнитного поля. Мп в морской и океанической воде.
- •Вопрос 47. Главное магнитное поле Земли и его аномалии.
- •Вопрос 48. Главное и переменное мп Земли. Вариации мп и их природа. Магнитные бури.
- •Вопрос 35. Геоэлектрическое поле Земли. Электрическая проводимость гидросферы, земной коры и её недр.
- •Вопрос 36. Электрическая проводимость атмосферы, ионосферы. Ионосферные слои. Влияние ионосферы на распространение радиоволн.
- •Вопрос 37. Электротеллурическое поле. Региональные и локальные эп земной коры. Вариации меридиональной и широтной напряженноти. Напряженность электротеллурического поля.
Вопрос 21. Барометрическая формула и распределение Больцмана.
Если на молекулы газа не действуют никакие внешние силы, то вследствие теплового движения они равномерно распределяются по всему объему сосуда, так что в каждой единице объема содержится в среднем одинаковое число молекул. При одинаковой во всех частях объема температуре в газе устанавливается всюду одинаковое давление Р = nkT = const (в соответствии с законом Паскаля).
Иначе обстоит дело, когда газ находится в некотором силовом поле, в котором на каждую частицу газа действует внешняя сила, толкающая ее в определенном направлении. Под действием такой силы молекулы будут собираться преимущественно в тех областях пространства, куда их заталкивают внешние силы, и там концентрация частиц, а значит, и давление газа будут возрастать. Т.е. действие внешних сил на молекулы газа противоположно тому действию, которое оказывает на них беспорядочное тепловое движение.
В результате одновременного действия внешних сил и теплового движения молекул в газе при заданной температуре устанавливается некоторое неравномерное распределение молекул в пространстве, не изменяемое во времени. Это значит, что при действии внешних сил плотность идеального газа, находящегося в равновесных условиях, будет различной в различных местах пространства, т.е. она будет некоторой функцией координат n= n(X,Y,Z).
Примером внешних сил является поле силы тяжести, а примером газа в таком силовом поле является земная атмосфера. Молекулы газов, составляющие атмосферный воздух, под влиянием теплового движения рассеялись бы в мировом пространстве, если бы отсутствовала сила тяжести. Напротив, если бы отсутствовало тепловое движение молекул, то под действием силы тяжести все молекулы воздуха упали бы на землю, и весь воздух собрался бы тончайшим слоем у поверхности Земли. Таким образом, само существование атмосферы является результатом одновременного действия силы притяжения молекул к Земле и их теплового движения. При этом в атмосфере устанавливается некоторое неравномерное распределение молекул воздуха по высоте. Соответственно этому распределению молекул устанавливается и определенный закон изменения давления с высотой.
Если бы земная атмосфера находилась в состоянии теплового равновесия, т.е. температура атмосферы была бы одинаковой на всех высотах, то в ней бы установилось так называемое барометрическое распределение плотности и давления с высотой.
Для
определения барометрического закона
изменения давления и плотности идеального
газа с высотой рассмотрим вертикальный
столб газа с площадью поперечного
сечения S
= 1, находящийся при постоянной температуре,
рис.1.
Обозначим давление газа на некотором нулевом уровне Z = 0 (уровне моря, поверхности земли, дне сосуда и т.д.) через Р0, а давление на высоте Z над нулувым уровнем через Р. При увеличении высоты на dZ давление газа уменьшится на некоторую величину dР. Это уменьшение давления равно весу столба газа высотой dZ с площадью основания S = 1
dP = - g dZ, (1)
где - - плотность газа. На основании уравнения состояния идеального газа, его плотность равна = P/RT (2)
Следовательно, dP = - (P/RT)g dZ, откуда dP/P = - (/RT)g dZ.
Интегрируя это выражение, находим
р z
dP/P = - /R
g dZ/Т
p0 0
или z
ln P/P0 = - /R g dZ/Т (3)
0
На небольших высотах над поверхностью земли ускорение силы тяжести g можно считать постоянным, не зависящим от высоты Z, и вынести его за знак интеграла . Кроме тего, если газ находится в тепловом равновесии при постоянной, не зависящей от высоты Z температуре Т, то и Т можно вынести за знак интеграла. В этом случае получим ln P/P0 = - gZ/RT, откуда Р/Р0 = е - gZ/RT или Р = Р0 е - gZ/RT. (4)
Формула
(4) характеризует изменение давления
газа с высотой и называется барометрической
формулой.
Она показывает, что давление газа с
высотой убывает по экспоненциальному
закону. Характер этого убывания
графически можно представить следующим
образом, рис.2.
![]()
Прибор для определения высоты над земной поверхностью называется высотомером (или альтиметром). Принцип его действия основан на использовании формулы (4). Из этой формулы следует, что давление с высотой убывает тем быстрее, чем тяжелее газ.
Принимая во внимание, что = mNA и R = k NA , мы можем переписать барометрическую формулу в виде Р = Р0 е - mgZ/ kT.
Так как P = nkT, то эта барометрическая формула выражает также закон убывания плотности газа с высотой n = n0 е - mgZ/ kT (5)
где n и n0 – числа молекул в единице объема газа в точках, разность высот между которыми равна Z. Ввиду чрезвычайно малой массы газовых молекул убывание плотности газа и его давления заметно только при значительных изменениях высоты. В случае небольшого изменения высоты изменение давления и плотности газа оказываются весьма малыми. Поэтому в случае газа, заключенного в сосуд небольшой высоты, действием силы тяжести на молекулы газа можно пренебречь. Поскольку температура атмосферы Земли не постоянна и изменяется с высотой, то для более точного описания изменений ее давления и плотности с высотой в формулы (4) и (5) необходимо вводить соответствующие поправки на изменение температуры.
Поскольку входящая в формулу (5) величина mgZ представляет собой потенциальную энергию молекул в поле тяготения, то эту формулу можно переписать в виде n = n0 е – U(Z) /kT (6) т.е. она выражает закон распределения молекул идеального газа по величине их потенциальной энергии в поле тяготения. Причем величина n0 имеет смысл числа частиц с потенциальной энергией равной нулю (n = n0 при U = 0).
В середине 19 века Больцман показал, что для идеального газа, находящегося в любом силовом поле, число частиц, обладающих заданной потенциальной энергией U, определяется формулой, имеющей тот же вид, что и формула (6). Поскольку, в произвольном силовом поле потенциальная энергия частицы может зависеть от всех трех координат, характеризующих ее положение в пространстве, а не только от одной, как это имело место в частном случае поля тяготения, т.е. n = n(X,Y,Z) и соответственно этому U = U(X,Y,Z). Таким образом, в любом силовом поле распределение частиц в пространстве выражается законом n(X,Y,Z) = n0 е – U(X,Y,Z) / kT - закон Больцмана (7)
где U(X,Y,Z) – потенциальная энергия частиц во внешнем силовом поле, зависящая от координат той точки, в которой находится частица; n(X,Y,Z) – концентрация частиц в точке с координатами X,Y,Z; n0 – число частиц в единице объема (концентрация) в том месте пространства, где их потенциальная энергия равна 0.
Больцман показал, что при постоянной Т концентрация частиц убывает с ростом U и возрастает с убыванием U, т.е. частицы концентрируются преимущественно в местах с меньшей потенциальной энергией.
Закон Больцмана является весьма общим законом, применимым не только к идеальному газу, но и ко многим другим системам невзаимодействующих частиц.
