
- •Вопрос 1. Со и ск. Основные хар-ки мех-го движения. Прямолинейные и криволинейныое движение мт. Скорость и ускорение.
- •Вопрос 2. Движение мт по окружности. Нормальное и тангенциальное ускорение. Связь угловых и линейных хар-к движения.
- •Вопрос 3. Векторные величины. Сложение, вычитание и умножение векторов. Сила и масса. Законы Ньютона.
- •Вопрос 4. Силы при криволинейном движении.
- •Вопрос 5. Закон всемирного тяготения. Зависимость веса тела от высоты над уровнем моря и геог-кой широты. Гравитационное поле.
- •Вопрос 6. Нормальное гравитационное поле и его аномалии.
- •Вопрос 7. Гравитационные явления и процессы.
- •Вопрос 8. Орбитальное движение Земли и ее осевое вращение. Неравномерности вращения Земли и их физическая природа.
- •Вопрос 9. Приливообразующие силы и их геофизическая роль.
- •Вопрос 10. Закон сохранения и изменения количества движения.
- •Вопрос 11. Работа силы и мощность. Кинетическая и потенциальная энергия.
- •2) Потенциальная энергия тела массы m, находящегося в гравитационном поле другого тела массой м на расстоянии r0 от него.
- •3) Определим потенциальную энергию тела массой m, находящегося на небольшой высоте h над земной поверхностью.
- •Вопрос 12. Гармоническое колебание и его хар-ки. Маятники.
- •Вопрос 13. Энергия колеблющегося тела. Собственные колебания Земли. Сложение гармонических колебаний.
- •Вопрос 14. Волна и ее хар-ки. Продольные и поперечные волны. Принцип Гюйгенса. Интенсивность волны.
- •Вопрос 15. Звуковая волна. Хар-ки звука. Инфразвук и ультразвук. Принцип локации.
- •Вопрос 16. Элементы механики жидкости. Основные определения. Уравнение неразрывности.
- •Вопрос 17. Уравнение Бернулли и его применение для определения статического и динамического давления.
- •Вопрос 18. Основные положения мкт строения вещества. Межмолекулярные силы. Агрегатное состояние вещества.
- •Вопрос 19. Макроскопические системы. Термодинамическое равновесие. Равновесные и неравновесные процессы. Обратимые и необратимые процессы.
- •Вопрос 20. Газовые законы (Бойля-Мариотта, Гей-Люсака, Авогадро). Уравнение состояния идеального газа.
- •Вопрос 21. Барометрическая формула и распределение Больцмана.
- •Вопрос 22. Явления переноса в газах и жидкостях.Диффузия в газах.
- •Вопрос 23. Явление переноса. Телопроводность.
- •Вопрос 24. Явления переноса в газах и жидкостях. Внутреннее трение (вязкость).
- •Вопрос 44. Мпз. Магнитные полюса Земли. Элементы земного магнетизма. Магнитные карты изогон, изоклин и изодин.
- •Вопрос 45. Межпланетное мп. Солнечный ветер. Магнитосфера Земли. Радиационные пояса Земли.
- •Вопрос 46. Природа геомагнитного поля. Источники энергии геомагнитного поля. Мп в морской и океанической воде.
- •Вопрос 47. Главное магнитное поле Земли и его аномалии.
- •Вопрос 48. Главное и переменное мп Земли. Вариации мп и их природа. Магнитные бури.
- •Вопрос 35. Геоэлектрическое поле Земли. Электрическая проводимость гидросферы, земной коры и её недр.
- •Вопрос 36. Электрическая проводимость атмосферы, ионосферы. Ионосферные слои. Влияние ионосферы на распространение радиоволн.
- •Вопрос 37. Электротеллурическое поле. Региональные и локальные эп земной коры. Вариации меридиональной и широтной напряженноти. Напряженность электротеллурического поля.
Вопрос 11. Работа силы и мощность. Кинетическая и потенциальная энергия.
Под действием постоянной силы F тело В может совершить некоторое перемещение r. Очевидно, что изменение скорости по модулю и перемещение возможно лишь в том случае, если проекция силы на направление перемещения тела отлична от нуля.
Составляющая силы Fcos называется движущей силой. Нормальная составляющая не вызывает перемещения тела по пути S.
Для характеристики перемещающего действия силы вводится
понитие работы.
Работа равна произведению движущей
силы на перемещение:
А=|F| |r|cos, т.е. (1)
А=(Fr)-скалярное произведение векторов силы F и перемещения r. Работа – величина скалярная.
Из (1) видно, что при 0<<900 - работа положительна – сила вызывает перемещение тела; при 900<<1800 – работа отрицательна – сила препятствует движению тела; при = 900 – сила не совершает работы по перемещению тела. В частности, центростремительная сила, действующая на тело, равномерно вращающееся по окружности, работы не совершает, т.к. Fц.с.V. Если F|| r, то А = F r.
Если тело перемещается под действием нескольких сил, то совершаемая ими работа равна сумме работ всех этих сил (т.е. равна работе результирующей этих сил) А = Аi = (Fi r) (2)
Формула (1) применима лишь для вычисления работы постоянной силы на прямолинейном пути. Однако в большинстве случаев траектории движущихся тел криволинейны, а силы, совершающие работу, изменяются по мере движения тел.
Чтобы найти работу переменной силы на криволинейном пути, весь путь разбивают на достаточно малые элементы. Каждый из элементов должен быть настолько мал, чтобы его можно было считать приблизительно прямолинейным, а действующую силу - неизменной в любой точке данного элемента пути. (Однако для различных элементов пути силы, вообще говоря, будут различными). Далее, для вычисления работы на каждом из элементов пути уже можно воспользоваться формулой (1). Тогда Аi = Fi ri cosi .
Работа переменной силы на всем криволинейном пути будет: А = Firicosi. Поскольку число слогаемых конечное, то получится лишь приблизительная величина работы на пути. Чтобы увеличить точность, необходимо n или ri и найти предел этой суммы, что практически сводится к операции интегрирования. Следовательно, А = limFi ri = Fcosdr. ro
Работу силы на некотором пути S можно определить из графика, дающего зависимость действующей силы от длины проходимого пути S, рис. 2
Действительно, элементарная работа на участке dS будет dA = FsdS - численно равна заштрихованной площади , а работа на всем пути как сумма элементарных работ будет равна сумме площадей всех тонких полосок, т.е. всей площади под кривой.
Единицей работы является джоуль. 1 Дж – работа, совершаемая силой 1Н при перемещении тела на расстояние 1м в направлении действия силы. 1Дж = 1 Нм.
Мощность N измеряется отношением работы А к промежутку времени t, за который она совершена: N = A/t. (3)
В случае движения тела с постоянной скоростьюV под действием силы F (преодолевающей сопротивление движению) мощность выражается формулой N = A/t = F r/t = FV.
Если же процесс работы протекает с течением времени неравномерно, то мощность определяется как отношение величины элементарной работы dA к элементарно малому отрезку времени dt, за который эта работа совершается N = dA/dt (мгновенная мощность)
В системе СИ единица мощности ватт (Вт). 1Вт – мощность, при которой за время 1с совершается работа 1 Дж. 1 Вт = 1 Дж/с. 1гВт = 100 Вт, 1кВт = 1000 Вт.
Рассмотрим еще одну физическую величину энергию, которая является количественной мерой движения материальных тел и систем, единой для всех форм движения материи. Процесс работы есть одна из форм передачи энергии от одного тела к другому. Поэтому работа может служить количественной мерой передаваемой энергии, она определяет изменение энергии тела. Именно работа А, приложенной к телу внешней силы, равна изменению энергии этого тела
А = Е = Е2 – Е1. (4)
Энергия характеризует способность тела или системы тел совершать работу или другими словами, энергия – это запас работы, которую способно совершить тело (или система тел) вследствие того, что оно обладает определенным состоянием движения. Энергия измеряется максимальной работой, которую при определенных (заданных) условиях может совершить эта система (тело).
Энергия характеризует состояние системы, способность системы к совершению работы при переходе из одного состояния в другое. Механическая энергия – однозначная функция состояния, т.е. данному состоянию тела соответствует одно и только одно значение его энергии.
Для измерения энергии служат те же величины, что и для измерения работы.
К и П энергия.
Если под действием постоянной силы F тело массы m перемещается на Х, то сила совершает работу и энергия движущегося тела возрастает на величину проделанной работы. Если тело перемещается по горизонтальной прямой, то А = Fx. Используя 2-ой зак. Ньютона и выражение для перемещения при равноускоренном движении, получим
А = mW x = mW( V0t + Wt2/2 ). (5)
Определим время из уравнения V(t) = V0 + Wt t = (V – V0)/W и подставим его в (5) А = mW V0(V – V0)/W + (V – V0)2/2W2 = mV2(t)/2 – mV02/2 (6)
Величину Ек=mV2/2 - наз.кинетической энергией. Т.о., работа, совершаемая телом, равна изменению его кинетической энергии. А = Ек1 – Ек0. Кинетическая энергия увеличивается, когда А > 0 и уменьшается, когда А<0. Например, силы трения совершают А<0.
Если в конце рассматриваемого перемещения тело останавливается (V(t) = 0), то совершенная максимальная работа равна кинетической энергии тела в начале перемещения. Значит, работа силы трения является мерой изменения кинетической энергии.
Пользуясь уже применявшимся выше приемом разбивки траектории тела на малые отрезки, несложно доказать, что формула (6) справедлива и в общем случае криволинейного пути и переменной силы.
Второй вид механической энергии – потенциальная энергия Еп – определяется взаимным положением тел или частиц, находящихся под воздействием сил взаимодействия. Потенциальная энергия – это запас работы, которую могут совершить действующие на тело силы взаимодействия (например, силы тяжести или упругие силы) при перемещении этого тела из данного положения в конечное положение из которого дальнейшее его перемещение под действием тех же сил уже невозможно. Потенциальная энергия тела, занимающего какое-либо положение в пространстве, обычно находится путем вычисления указанной работы действующих на него сил. Только при этом необходимо предварительно установить то конечное состояние тела, в котором его потенциальная энергия принимается равной нулю.
В качестве примера определим:
1) потенциальную энергию упругодеформированного тела (стержня). Она равна максимальной работе А, совершаемой силами упругости, восстанавливающими первоначальный размер и форму стержня: Еп = А. Сила упругости равна F = ESl l.
Эта сила является переменной величиной: она линейно зависит от удлинения l, изменяясь от нуля при l = 0 до F. Поэтому можно считать, что при перемещении l действует средняя сила упругости <F>=(0+F)/2=F/2.
Тогда A = <F>l = F l 2 = ES(l)2/2l0, следовательно Еп = к(l)2/2, (7)
где к = ES/l - коэффициент пропорциональности в законе Гука.
При всех других видах деформации потенциальная энергия тоже пропорциональна квадрату деформации (смещения).