
- •Сборник лекций к дисциплинам:
- •§1. Краткие сведения по квантовой механике
- •§2. Уравнение Шредингера
- •§3. Энергетические состояния электронов в водородоподобных системах
- •Раздел 1. Основы физики полупроводников
- •1.1. Полупроводники
- •Энергетические (зонные) диаграммы полупроводников.
- •Уровень Ферми
- •Физические процессы в полупроводниках
- •Беспримесный полупроводник.
- •Процесс генерации пар зарядов.
- •Примеси в полупроводниках.
- •Электронный полупроводник (n-типа)
- •Дырочный полупроводник (р-типа).
- •1.2 Типы рекомбинации
- •1.3. Электронно-дырочный переход. §1. Классификация. Методы изготовления.
- •§2. Свойства р-n-перехода.
- •Учет дополнительных факторов, влияющих на вольт-амперную характеристику диода. Пробой.
- •Импульсные свойства р-n перехода. (динамические процессы в р-n-переходе)
- •Раздел 2. Полупроводниковые приборы
- •2.1. Полупроводниковые диоды
- •§ 1. Выпрямительные диоды.
- •§2. Высокочастотные диоды.
- •§ 3. Импульсные диоды.
- •§ 4. Сверхвысокочастотные диоды.
- •§ 5. Стабилитроны.
- •§ 6. Варикапы.
- •§ 8. Обращенные диоды.
- •§ 8. Система обозначений полупроводниковых диодов.
- •§ 9. Рабочий режим диода.
- •2.2. Биполярные транзисторы § 1. Общие сведения. Устройство.
- •§ 2. Физические процессы, протекающие вVt. ТокиVt.
- •§3. Основные схемы включения транзисторов.
- •§4 Влияние температуры на статические характеристикиVTа.
- •§5 Эквивалентные схемы замещения транзистора.
- •§6 Представление транзистора в виде четырехполюсника и системы статистических параметров.
- •2.3 Полевые транзисторы §1. Полевые транзисторы с управляющим переходом.
- •§2. Статические характеристики полевого транзистора с управляющимp-n-переходом.
- •§3. Полевые транзисторы с изолированным затвором.
- •2.4. Тиристоры (vs)
- •§ 1. Принцип действия.
- •§ 2. Математический анализ работы тиристора (не нужно).
- •§ 3. Вольт – амперная характеристика тиристора.
- •§ 4. Типы тиристоров.
- •§ 5. Особенности работы и параметры тиристоров.
- •2.5. Оптоэлектронные полупроводниковые приоры. Полупроводниковые излучатели
- •Фотоприемники (общие сведения)
- •Фоторезисторы
- •Фотодиоды
- •Фотоэлементы
- •Фототранзисторы
- •Фототиристоры
- •Оптроны
- •2.6. Интегральные микросхемы
- •Раздел 3. Усилители §1. Анализ процесса усиления электрических сигналов
- •§2. Работа уэ с нагрузкой. Динамические х-ки.
- •Нагруз. Линии у и их построение.
- •Сквозная характеристика у на биполярномVt.
- •Общие сведения.
- •Классификация у.
- •§4 Основные параметры и характеристики усилителей.
- •§5 Обратная связь в усилителях.
- •Режимы работы уэ.
- •Раздел 4. Операционные усилители Общие сведения
- •Инвертирующий усилитель
- •Интегратор
- •Содержание
§ 3. Вольт – амперная характеристика тиристора.
Эта характеристика представляет собой зависимость результирующего тока Iот напряжения, приложенного между анодом и катодом
I = f(UA) (рис.5). На участкеBCрезультирующий ток мал, т.к. коллекторный переход П2 находится под обратным напряжением и имеет большое сопротивление. ВАХ на участкеBCпрактически отражает зависимость обратного тока коллекторного перехода П2 от обратного напряжения на этом переходе и напоминает ВАХ полупроводникового диода при обратном включении. В точкеCпроисходит компенсация обратного напряжения на коллекторном переходе, и ток тиристора повышается.
Рис. 5. - ВАХ тиристора
После этого достаточно небольшого повышения прямого напряжения, и переход П2 откроется. В этом случае оба тиристора из активного режима перейдут в режим насыщения, при котором оба p–n– перехода открыты. В режиме насыщения ток резко повышается, а напряжение резко уменьшается. На участке СА тиристор обладает отрицательным дифференциальным сопротивлениемR= –∆UA/∆I, как и у туннельных диодов.
В точке А создается минимальное напряжение на тиристоре, т.к. все три p–n– перехода открыты и их сопротивление очень мало. Характеристика выше точки А напоминает ВАХ полупроводникового диода при прямом включении.
Таким образом, на участке подачи прямого напряжения UAимеются две точки перегиба. Первая точка – С. Напряжение в этой точке называетсянапряжением включения– прямое напряжение, при котором происходит переключение тиристора. Вторая точка – А. Ток тиристора в этой точке называетсятоком удержания–Iуд, это минимальный прямой ток тиристора, при котором тиристор еще может находится в открытом состоянии. При понижении тока до значения <Iудтиристор переходит из открытого состояния в закрытое.
При подаче обратного напряжения между анодом и катодом переходы П1 и П3 оказываются под обратным напряжением, и наблюдается обычная ВАХ полупроводникового диода при обратном включении.
Тиристоры, которые были рассмотрены, называются динисторами, т.к. они имеют два вывода. Условное обозначение показано на рис. 6.
Рис. 6 - Условное обозначение динистора
§ 4. Типы тиристоров.
Тринисторы (обычно именно их называют тиристорами).
В динисторах включение производится путем повышения анодного напряжения до значения UA≥UA вкл, при котором ток через прибор резко повышается. Это является его небольшим недостатком, т.к. включение производится большим напряжением, при протекании в цепи очень больших токов, что свидетельствует о малой эффективности управления. Поэтому динисторы получили малое распространение.
Однако включить тиристор можно и другим образом, повышая ток только в одном из двух эквивалентных транзисторов путем подачи дополнительного управляющего напряжения на один из эквивалентных переходов. Такой тиристор является трёхэлектродным и называется тринистором(рис. 7)
На одной из внутренних областей тиристора делается вывод, на который подается управляющее прямое напряжение. С повышением управляющего прямого напряжения при неизменном напряжении между анодом и катодом ток соответствующего эквивалентного перехода растет, повышается коэффициент передачи тока α этого тиристора, и можно добиться, чтобы тиристор открылся при напряжении UA<UA вкл.
Рис. 7.- Структура тринистора |
Рис. 8. – ВАХ тринистора |
Таким образом, условие α1+α2= 1 выполняется при напряженияхUA<UA вклза счет изменения управляющего напряжения. Чем большеIупр, тем при меньшем напряженииUAпроизойдет переключение тиристора (рис. 8). Для управления включением требуются незначительные ток и напряжение, т.е. управление производится с очень небольшой затратой мощности, но при этом в анодной цепи могут протекать токи в десятки и сотни ампер при напряжениях в тысячи вольт.
Таким образом, тринистор является прибором, обладающим очень эффективным управлением.
Следует отметить, что после того как управляющий ток обеспечил отпирание тиристора, дальнейшее управление током за счет изменения управляющего напряжения не происходит. Условное обозначение тиристора (тринистора) показано на рис. 9.
Рис. 9. - Условное обозначение тринистора
Симметричные тиристоры.
В некоторых схемах регулировки переменного тока требуются тиристоры, которые можно включать как в прямом, так и в обратном направлении. Этому требованию отвечают симметричные тиристоры. Эти тиристоры имеют одинаковые ВАХи при различных полярностях приложенного напряжения.
В симметричном тиристоре (рис.10) имеется пять областей и четыре p–n– перехода. ОбластиN3 иP2 подключены к катоду, аN1 иP1 – к аноду. При полярности напряжения плюсом на Р1 и минусом наN3, переходы П2 и П4 находятся под прямым напряжением, а П3 – под обратным.p–n– переход П1 находится под обратным напряжением, но он зашунтирован сопротивлением области Р1. В результате в цепи включен тиристор с обычной четырехслойной структуройP1N2P2N3 с плюсом напряжения на крайней области Р1 и минусом наN3. В такой структуре будут наблюдаться те же процессы, которые были рассмотрены ранее.
При смене полярности – подачи напряжения «+» на Р2 и «–» на N1 – переходы П1 и П3 окажутся под прямым напряжением, аN2 – под обратным. В этом случае переход П4 также окажется под обратным напряжением, но он зашунтирован сопротивлением области Р2. Напомним, что ток идет по пути наименьшего сопротивления, поэтому он проходит через область Р2, а не через очень большое сопротивление перехода П4.
Таким образом, и в этом случае получена такая же четырехслойная структура P2N2P1N1, в которой произойдут процессы, характерные для тиристора, включенного под прямое напряжение. Обычно в такой структуре доб – ся управляющий электрод, как и в тринисторе.
Управляющий симметричный тринистор получил название – симистор. Его ВАХ показана на рис.11, а условное обозначение – на рис. 12.
Рис. 12. - Условное обозначение симистора |
Рис. 11. - ВАХ симистора |