Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка физиология сист. кровообращ.doc
Скачиваний:
164
Добавлен:
11.09.2016
Размер:
392.7 Кб
Скачать

Тема: физиология кровообращения.

Продолжительность изучения темы: 17 часов;

из них на занятие 8 часов; самостоятельная работа 9 часов

Место проведения: учебная комната

Цель занятия: сформировать у студентов мотивацию важности изучения сосудистой системы для последующего применения этих знаний и умений в профессиональной деятельности

Задачи:

1.Изучить особенности функциональной дифференцировки сосудистого русла; основные показатели гемодинамики и факторы, их определяющие;

2. Механизмы движения крови по сосудам;

3. Изучить механизмы регуляции сосудистого тонуса у человека.

4.. Освоить методы определения артериального давления у человека;

5. Освоить методику определения артериального давления у человека пальпаторным и аускультативным способами;

6.Научиться рассчитывать по формулам величину пульсового, среднего артериального давления, систолического объёма, минутного объёма крови и делать заключение о состоянии гемодинамики;

Значение изучения темы (мотивация): изучение данной темы необходимо для оценки состояния кровообращения человека в их будущей профессии. Необходимо помнить, что знание этого раздела является чрезвычайно важным для последующего изучения вопросов нарушения и коррекции механизмов регуляции кровообращения в клинике.

Методические рекомендации по самоподготовке:

В зависимости от строения стенки кровеносного сосуда в сосудистой системе различают артерии, артериолы, капилляры, венулы и вены, межсосудистые анастомозы, микроциркуляторное русло и гематические барьеры (например, гематоэнцефалический). Функционально сосуды подразделяют на амортизирующие (артерии), резистивные (концевые артерии и артериолы), прекапиллярные сфинктеры (концевой отдел прекапиллярных артериол), обменные (капилляры и венулы), ёмкостные (вены), шунтирующие (артериовенозные анастомозы).

Аорта. Поверхность внутренней оболочки выстлана эндотелиальными клетками. Подэндотелиальный слой содержит коллагеновые и эластические волокна. Здесь встречаются фибробласты и клетки, напоминающие по строению ГМК. С возрастом и особенно при атеросклерозе внутренняя оболочка утолщается, а ГМК накапливают липиды. Мощная средняя оболочка содержит окончатые эластические мембраны. В соединительной ткани наружной оболочки проходят нервные волокна и vasa vasorum. Часть vasa vasorum проникает в наружные отделы средней оболочки.

· Артерии — кровеносные сосуды, транспортирующие кровь от сердца. Артерии, расположенные вблизи сердца (магистральные сосуды), испытывают наибольший перепад давления. Поэтому они обладают выраженной эластичностью (артерии эластического типа). Стенка магистральных артерий амортизирует ударную волну крови (систолический выброс) и переправляет далее выбрасываемую с каждым ударом сердца кровь. Периферические артерии (распределительные сосуды) имеют развитую мышечную стенку (артерии мышечного типа), способны изменять величину просвета, а следовательно, скорость кровотока и распределение крови в сосудистом русле.

Артерии эластического типа— магистральные артерии. К ним относят аорту, лёгочные, общую сонную и подвздошные артерии. В состав их стенки в большом количестве входят эластические мембраны и эластические волокна. Толщина стенки артерий эластического типа составляет примерно 15% диаметра их просвета.

Артерии мышечного типа Их суммарный диаметр (толщина стенки + диаметр просвета) достигает 1 см, диаметр просвета варьирует от 0,3 до 10 мм. Артерии мышечного типа — распределительные, т.к. именно эти сосуды (благодаря выраженной способности к изменению просвета) контролируют интенсивность кровотока (перфузию) отдельных органов.

· Артериолы. Артерии мышечного типа переходят в артериолы — короткие сосуды, имеющие важное значение для регуляции АД.

Терминальные артериолы. В месте отхождения от терминальной артериолы капилляра обычно располагается скопление циркулярно ориентированных ГМК, образующих прекапиллярный сфинктер (единственная структура капиллярной сети, содержащая ГМК).

· Капилляры Разветвлённая капиллярная сеть соединяет артериальное и венозное русла. Капилляры участвуют в обмене веществ между кровью и тканями. Общая обменная поверхность (поверхность капилляров и венул) составляет не менее 1000 м2, а в пересчёте на 100 г ткани — 1,5 м2. В регуляции капиллярного кровотока принимают непосредственное участие артериолы и венулы. В совокупности эти сосуды (от артериол до венул включительно) образуют структурно-функциональную единицу сердечно-сосудистой системы — терминальное, или микроциркуляторное русло. Плотность капилляров в различных органах существенно варьирует. Так, на 1 мм3 миокарда, головного мозга, печени, почек приходится 2500–3000 капилляров; в скелетной мышце — 300–1000 капилляров; в соединительной, жировой и костной тканях их значительно меньше. Структура. Стенка капилляра образована эндотелием, его базальной мембраной и перицитами. Различают три основных типа капилляров с непрерывным эндотелием, с фенестрированным эндотелием и с прерывистым эндотелием.

Капилляры с непрерывным эндотелием — наиболее распространённый тип. Диаметр их просвета менее 10 мкм. Эндотелиальные клетки связаны при помощи плотных контактов, содержат множество пиноцитозных пузырьков, участвующих в транспорте метаболитов между кровью и тканями. Капилляры этого типа характерны для мышц и лёгких.

Барьеры. Частный случай капилляров с непрерывным эндотелием — капилляры, формирующие гематоэнцефалический и гематотимический барьеры. Для эндотелия капилляров барьерного типа характерно умеренное количество пиноцитозных пузырьков и плотные межэндотелиальные контакты.

Капилляры с фенестрированным эндотелием присутствуют в капиллярных клубочках почки, эндокринных железах, ворсинках кишки, в экзокринной части поджелудочной железы. Фенестра — истончённый участок эндотелиальной клетки диаметром 50–80 нм. Предполагают, что фенестры облегчают транспорт веществ через эндотелий. Наиболее чётко фенестры видны на электронограммах капилляров почечных телец.

Капилляр с прерывистым эндотелием называют также капилляром синусоидного типа, или синусоидом. Подобный тип капилляров присутствует в кроветворных органах, состоит из эндотелиальных клеток с щелями между ними и прерывистой базальной мембраны.

· Микроциркуляторное русло организовано следующим образом: под прямым углом от артериолы отходят так называемые метартериолы (терминальные артериолы), а уже от них берут начало анастомозирующие между собой истинные капилляры, образующие сеть. В местах отделения капилляров от метартериолы имеются прекапиллярные сфинктеры, контролирующие локальный объём крови, проходящий через истинные капилляры. Объём же крови, проходящей через терминальное сосудистое русло в целом, определяется тонусом ГМК артериол. В микроциркуляторном русле присутствуют артериовенозные анастомозы, связывающие артериолы непосредственно с венулами или мелкие артерии с мелкими венами. Стенка сосудов анастомоза содержит много ГМК. Артериовенозные анастомозы в большом количестве присутствуют в некоторых участках кожи, где они играют важную роль в терморегуляции (мочка уха, пальцы).

· Гематоэнцефалический барьер надёжно изолирует мозг от временных изменений состава крови. Непрерывный эндотелий капилляров — основа гематоэнцефалического барьера. Снаружи эндотелиальная трубка покрыта базальной мембраной. Капилляры мозга почти полностью окружены отростками астроцитов, а эндотелиальные клетки связаны при помощи непрерывных цепочек плотных контактов. Функция. Гематоэнцефалический барьер функционирует как избирательный фильтр.

· Венулы принимают кровь из капилляров и постепенно собираются в вены. Венулы, как никакие другие сосуды, имеют прямое отношение к течению воспалительных реакций. Через их стенку при воспалении проходят массы лейкоцитов (диапедез) и плазма. Кровь из капиллярной сети последовательно поступает в посткапиллярные, собирательные и мышечные венулы.

Посткапиллярная венула. Венозная часть капилляров плавно переходит в посткапиллярную венулу. Её диаметр может достигать 30 мкм. Гистамин (через гистаминовые рецепторы) вызывает резкое увеличение проницаемости эндотелия посткапиллярных венул, что приводит к отёку окружающих тканей.

Собирательная венула. Посткапиллярные венулы впадают в собирательную венулу.

Мышечная венула. Собирательные венулы впадают в мышечные венулы диаметром до 100 мкм. Название сосуда — мышечная венула — определяет присутствие ГМК.

· Вены — сосуды, по которым кровь оттекает от органов и тканей к сердцу. Более 60% объёма циркулирующей крови находится в венах. Давление в венах низкое, стенка тонкая, однако мышечного слоя достаточно, чтобы вены могли активно участвовать в реакциях перераспределения крови между различными тканями и органами. Некоторые вены имеют клапаны.

Клапаны. Вены, особенно конечностей, имеют клапаны, пропускающие кровь только по направлению к сердцу. Соединительная ткань образует структурную основу створок клапанов, а вблизи их фиксированного края располагаются ГМК. В целом клапаны можно рассматривать как складки интимы (внутренней оболочки).

Физиологические параметры кровотока

Ниже приведены основные физиологические параметры, необходимые для характеристики кровотока.

· Систолическое давление — максимальное давление, достигаемое в артериальной системе во время систолы. В норме систолическое давление в большом круге кровообращения равно в среднем 120 мм рт.ст.

· Диастолическое давление — минимальное давление, возникающее во время диастолы в большом круге кровообращения, составляет в среднем 80 мм рт.ст.

· Пульсовое давление. Разность между систолическим и диастолическим давлением называют пульсовым давлением.

· Среднее артериальное давление (САД) ориентировочно оценивают по формуле:

САД = [систолическое АД + 2(диастолическое АД)]/3

Среднее АД в аорте (90–100 мм рт.ст.) по мере разветвления артерий постепенно понижается. В концевых артериях и артериолах давление резко падает (в среднем до 35 мм рт.ст.), а затем медленно снижается до 10 мм рт.ст. в крупных венах.

· Площадь поперечного сечения. Диаметр аорты взрослого человека составляет 2 см, площадь поперечного сечения — около 3 см2. По направлению к периферии площадь поперечного сечения артериальных сосудов медленно, но прогрессивно возрастает. На уровне артериол площадь поперечного сечения составляет около 800 см2, а на уровне капилляров и вен — 3500 см2. Площадь поверхности сосудов значительно уменьшается, когда венозные сосуды соединяются, образуя полую вену с площадью поперечного сечения в 7 см2.

· Линейная скорость тока крови обратно пропорциональна площади поперечного сечения сосудистого русла. Поэтому средняя скорость движения крови выше в аорте (30 см/с), постепенно снижается в мелких артериях и наименьшая в капиллярах (0,026 см/с), общее поперечное сечение которых в 1000 раз больше, чем в аорте. Средняя скорость кровотока снова увеличивается в венах и становится относительно высокой в полых венах (14 см/с), но не столь высокой, как в аорте.

· Объёмная скорость кровотока (обычно выражают в миллилитрах в минуту или литрах в минуту). Общий кровоток у взрослого человека в состоянии покоя — около 5000 мл/мин. Именно это количество крови выкачивается сердцем каждую минуту, поэтому его называют также сердечным выбросом.

· Скорость кровообращения (скорость кругооборота крови) может быть измерена на практике: от момента инъекции препарата солей жёлчных кислот в локтевую вену до времени появления ощущения горечи на языке. В норме скорость кровообращения составляет 15 с.

· Сосудистая ёмкость. Размеры сосудистых сегментов определяют их сосудистую ёмкость. Артерии содержат около 10% общего количества циркулирующей крови, капилляры — около 5%, венулы и небольшие вены — примерно 54% и большие вены — 21%. Камеры сердца вмещают остающиеся 10%. Венулы и небольшие вены обладают большой ёмкостью, что делает их эффективным резервуаром, способным накапливать большие объёмы крови.

Кровь движется из области высокого давления в область более низкого давления. Соотношения между средними величинами кровотока, давления и сопротивления в кровеносных сосудах аналогичны соотношениям между током, напряжением и сопротивлением в законе Ома. Объёмный кровоток в любой части сосудистой системы равен отношению эффективного перфузионного давления к гидродинамическому сопротивлению.

Эффективное перфузионное давление определяют как разницу среднего давления в артериальном конце и среднего давления в начале венозного русла. Сопротивление (препятствие потоку крови в сосуде) не может быть измерено каким-нибудь прямым способом. Вместо этого сопротивление может быть рассчитано после измерения кровотока и разницы давлений между двумя точками сосуда. Если разность давлений между двумя точками равна 1 мм рт.ст., кровоток — 1 мл/с, то сопротивление равно 1 ЕД сопротивления.

Методы измерения кровотока

· Электромагнитная флоуметрия основана на принципе генерации напряжения в проводнике, движущемся через магнитное поле, и пропорциональности величины напряжения скорости движения. Кровь является проводником, магнит располагается вокруг сосуда, а напряжение, пропорциональное объёму кровотока, измеряется электродами, расположенными на поверхности сосуда.

· Допплерометрия использует принцип прохождения ультразвуковых волн через сосуд и отражения волн от движущихся эритроцитов и лейкоцитов. Частота отражённых волн меняется — возрастает пропорционально скорости тока крови.

· Измерение сердечного выброса осуществляют прямым методом Фика и методом индикаторного разведения. Метод Фика основан на косвенном подсчёте минутного объёма кровообращения по артериовенозной разнице O2 и определении объёма кислорода, потребляемого человеком в минуту. В методе индикаторного разведения (радиоизотопный метод, метод термодилюции) применяют введение индикаторов в венозную систему с последующим взятием проб из артериальной системы.

· Плетизмография. Информацию о кровотоке в конечностях получают с помощью плетизмографии.

Предплечье помещают в заполненную водой камеру, соединённую с прибором, записывающим колебания объёма жидкости. Изменения объёма конечности, отражающие изменения в количестве крови и интерстициальной жидкости, смещают уровень жидкости и регистрируют плетизмографом. Если венозный отток конечности выключается, то колебания объёма конечности являются функцией артериального кровотока конечности (окклюзионная венозная плетизмография).

Принципы и уравнения, используемые для описания движения идеальных жидкостей в трубках, часто применяют для объяснения поведения крови в кровеносных сосудах. Однако кровеносные сосуды — не жёсткие трубки, а кровь — не идеальная жидкость, а двухфазная система (плазма и клетки), поэтому характеристики кровообращения отклоняются (иногда весьма заметно) от теоретически рассчитанных.

· Ламинарный поток. Движение крови в кровеносных сосудах можно представить как ламинарное (т.е. обтекаемое, с параллельным течением слоёв). Слой, прилежащий к сосудистой стенке, практически неподвижен. Следующий слой движется с небольшой скоростью, в слоях ближе к центру сосуда скорость движения нарастает, а в центре потока максимальна. Ламинарное движение сохраняется до достижения некоторой критической скорости. Выше критической скорости ламинарный поток становится турбулентным (вихревым). Ламинарное движение бесшумно, турбулентное движение порождает звуки, при должной интенсивности слышимые стетофонендоскопом.

· Турбулентный поток. Возникновение турбулентности зависит от скорости потока, диаметра сосуда и вязкости крови. Сужение артерии увеличивает скорость кровотока через место сужения, создаёт турбулентность и звуки ниже места сужения. Примеры шумов, воспринимаемых над стенкой артерии, — шумы над участком сужения артерии, вызванным атеросклеротической бляшкой, и тоны Короткова при измерении АД. При анемии наблюдают турбулентность в восходящей аорте вследствие снижения вязкости крови, отсюда и систолический шум.

· Вязкость и сопротивление. Сопротивление кровотоку определяется не только радиусом кровеносных сосудов (сопротивление сосудов), но и вязкостью крови. Плазма примерно в 1,8 раза более вязкая, чем вода. Вязкость цельной крови в 3–4 раза выше вязкости воды. Следовательно, вязкость крови в значительной степени зависит от гематокрита, т.е. процентного содержания эритроцитов в крови. В крупных сосудах увеличение гематокрита вызывает ожидаемое повышение вязкости. Однако в сосудах с диаметром менее 100 мкм, т.е. артериолах, капиллярах и венулах изменения вязкости на единицу изменений гематокрита намного меньше, чем в больших сосудах.

Изменения гематокрита сказываются на периферическом сопротивлении, главным образом, крупных сосудов. Тяжёлая полицитемия (увеличение количества эритроцитов разной степени зрелости) повышает периферическое сопротивление, увеличивая работу сердца. При анемии периферическое сопротивление понижено, отчасти за счёт уменьшения вязкости.

В сосудах эритроциты стремятся расположиться в центре текущего потока крови. Следовательно, вдоль стенок сосудов движется кровь с низким гематокритом. Ответвления, отходящие от крупных сосудов под прямыми углами, могут получать непропорционально меньшее количество эритроцитов. Этот феномен, называемый скольжением плазмы, может объяснять тот факт, что гематокрит капиллярной крови постоянно на 25% ниже, чем в остальных частях тела.

· Критическое давление закрытия просвета сосудов. В жёстких трубках соотношение между давлением и скоростью потока гомогенной жидкости линейное, в сосудах такой зависимости нет. Если давление в мелких сосудах уменьшается, то кровоток останавливается раньше, чем давление упадёт до нуля. Это касается прежде всего давления, продвигающего эритроциты через капилляры, диаметр которых меньше размеров эритроцитов. Ткани, окружающие сосуды, оказывают на них постоянное небольшое давление. При понижении внутрисосудистого давления ниже тканевого давления сосуды спадаются. Давление, при котором кровоток прекращается, называют критическим давлением закрытия.

· Растяжимость и податливость сосудов. Все сосуды растяжимы. Это свойство играет важную роль в кровообращении. Так, растяжимость артерий способствует формированию непрерывного тока крови (перфузии) через систему мелких сосудов в тканях. Из всех сосудов наиболее растяжимы вены. Небольшое повышение венозного давления приводит к депонированию значительного количества крови, обеспечивая ёмкостную (аккумулирующую) функцию венозной системы. Растяжимость сосудов определяют как увеличение объёма в ответ на повышение давления, выраженное в миллиметрах ртутного столба. Если давление в 1 мм рт.ст. вызывает в кровеносном сосуде, содержащем 10 мл крови, увеличение этого объёма на 1 мл, то растяжимость будет составлять 0,1 на 1 мм рт.ст. (10% на 1 мм рт.ст.).

На практике важнее знать общее количество сосудов, способных резервировать кровь из кровообращения в ответ на каждый миллиметр ртутного столба повышенного давления, чем просто растяжимость отдельных сосудов. Такое понятие, характеризующее эластичность сосудистой стенки, называют податливостью. Чем выше податливость, тем больше растяжимость кровеносных сосудов.

Растяжимость и податливость различаются между собой. Сосуды, имеющие высокую растяжимость, но имеющие малый объём, могут иметь намного меньшую податливость, чем менее растяжимые сосуды, имеющие большой объём. Так, податливость вены в 24 раза больше, чем в соответствующей артерии, потому что она в 8 раз растяжимее и имеет в 3 раза больший объём. Единица измерения податливости — 1 мл/мм рт.ст.

· Стресс-релаксация. В венозном сосудистом русле проявляется так называемый феномен стресс-релаксации, свойственный всем ГМК. Введённый внутривенно значительный объём крови вызывает немедленное эластическое растяжение вен, а ГМК после быстрой релаксации начинают медленно возвращаться к исходной длине. Стресс-релаксация, увеличивая податливость, служит механизмом для поддержания адекватного кровообращения при переливании больших объёмов крови. Этот же механизм работает и в обратном направлении, автоматически приспосабливая кровообращение к деятельности в условиях уменьшенного объёма крови после большой кровопотери. Важно учитывать, что в состоянии покоя более 60% ОЦК находится в венозной системе. При переливании крови менее 1% её объёма распределяется в артериальной системе (системе высокого давления), а вся остальная кровь распределяется в венозной системе, малом круге кровообращения, предсердиях и правом желудочке (системе низкого давления).

Измерение артериального давления

Прямой метод. В некоторых клинических ситуациях АД измеряют путём введения в артерию иглы с датчиками давления. Этот прямой способ определения показал, что АД постоянно колеблется в границах некоторого постоянного среднего уровня. На записях кривой АД наблюдают три вида колебаний (волн) — пульсовые (совпадают с сокращениями сердца), дыхательные (совпадают с дыхательными движениями) и непостоянные медленные (отражают колебания тонуса сосудодвигательного центра).

Непрямой метод. На практике систолическое и диастолическое АД измеряют непрямым способом, используя аускультативный метод Рива–Роччи с определением тонов Короткова.

· Систолическое АД. Полую резиновую камеру (находящуюся внутри манжеты, которую можно фиксировать вокруг нижней половины плеча), соединённую системой трубок с резиновой грушей и манометром, накладывают на плечо. Стетоскоп устанавливают над переднелоктевой артерией в локтевой ямке. Накачивание воздуха в манжету сдавливает плечо, а показания манометра регистрируют величину давления. Манжету, наложенную на плечо, раздувают, пока давление в ней не превысит уровень систолического АД, а затем медленно выпускают из неё воздух. Как только давление в манжете оказывается меньше систолического, кровь начинает пробиваться через артерию, сдавленную манжетой, — в момент пика систолического АД в переднелоктевой артерии начинают прослушиваться стучащие тоны, синхронные с ударами сердца. В этот момент уровень давления манометра, связанного с манжеткой, показывает величину систолического АД.

· Диастолическое АД. По мере снижения давления в манжете характер тонов изменяется: они становятся менее стучащими, более ритмичными и приглушёнными. Наконец, когда давление в манжетке достигает уровня диастолического АД, артерия более не сдавлена во время диастолы — тоны исчезают. Момент полного их исчезновения свидетельствует, что давление в манжете соответствует диастолическому АД.

· Тоны Короткова. Возникновение тонов Короткова обусловлено движением струи крови через частично сдавленный участок артерии. Струя вызывает турбулентность в сосуде, расположенном ниже манжетки, что вызывает вибрирующие звуки, слышимые через стетофонендоскоп.

· Погрешность. При аускультативном методе определения систолического и диастолического АД возможны расхождения от значений, полученных при прямом измерении давления (до 10%). Автоматические электронные тонометры, как правило, занижают значения и систолического, и диастолического АД на 10%.

· Факторы, влияющие на величины АД

- Возраст. У здоровых людей величина систолического АД увеличивается от 115 мм рт.ст. в возрасте 15 лет до 140 мм. рт.ст. в возрасте 65 лет, т.е. увеличение АД происходит со скоростью около 0,5 мм рт.ст. в год. Диастолическое АД возрастает от 70 мм рт.ст. в возрасте 15 лет до 90 мм рт.ст., т.е. со скоростью около 0,4 мм рт.ст. в год.

- Пол. У женщин систолическое и диастолическое АД ниже между 40 и 50 годами, но выше в возрасте от 50 лет и более.

- Масса тела. Систолическое и диастолическое АД непосредственно коррелируют с массой тела человека — чем больше масса тела, тем выше АД.

- Положение тела. Когда человек встаёт, то сила тяжести изменяет венозный возврат, уменьшая сердечный выброс и АД. Компенсаторно увеличивается ЧСС, вызывая повышение систолического и диастолического АД и общего периферического сопротивления.

- Мышечная деятельность. АД повышается во время работы. Систолическое АД увеличивается за счёт усиления сокращений сердца. Диастолическое АД вначале понижается за счёт расширения сосудов работающих мышц, а затем интенсивная работа сердца приводит к повышению диастолического АД.

Венозное кровообращение

Движение крови по венам осуществляется в результате насосной функции сердца. Венозный кровоток усиливается также во время каждого вдоха за счёт отрицательного давления в грудной полости (присасывающее действие) и за счёт сокращений сдавливающих вены скелетных мышц конечностей (в первую очередь ног).

Венозное давление

Центральное венозное давление — давление в крупных венах в месте их впадения в правое предсердие — в среднем составляет около 4,6 мм рт.ст. Центральное венозное давление — важная клиническая характеристика, необходимая для оценки насосной функции сердца. При этом решающее значение имеет давление в правом предсердии (около 0 мм рт.ст.) — регуляторе баланса между способностью сердца откачивать кровь из правого предсердия и правого желудочка в лёгкие и возможностью крови поступать из периферических вен в правое предсердие (венозный возврат). Если сердце работает интенсивно, то давление в правом желудочке понижается. Напротив, ослабление работы сердца повышает давление в правом предсердии. Любые воздействия, ускоряющие приток крови в правое предсердие из периферических вен, повышают давление в правом предсердии.

· Исходный (референтный) уровень, по отношению к которому измеряют давление в правом предсердии, — трёхстворчатый клапан.

· Факторы, увеличивающие венозный возврат (соответственно повышающие давление в правом предсердии): увеличение ОЦК, повышение тонуса крупных сосудов всего тела с увеличением периферического венозного давления, расширение артериол, приводящее к понижению общего периферического сопротивления и ускоряющее поступление крови из артерий в вены.

· Давление в правом предсердии может повышаться до 20–30 мм рт.ст. при серьёзных заболеваниях сердца или в результате массивного переливания крови, вызывающего повышенный приток крови из периферических вен. Нижние границы давления в правом предсердии варьируют от –3 до –5 мм рт.ст., что обусловлено отрицательным давлением внутри грудной полости. Давление в правом предсердии приближается к нижним значениям, если насосная функция сердца резко усилена или поступление крови с периферии в сердце уменьшено (например, вследствие тяжёлого кровотечения).

Периферическое венозное давление. Давление в венулах равно 12–18 мм рт.ст. Оно уменьшается в крупных венах примерно до 5,5 мм рт.ст., так как в них сопротивление движению крови снижено или практически отсутствует. Более того, в грудной и брюшной полостях вены сдавливаются окружающими их структурами.

· В грудной полости вены сдавливаются окружающими их тканями; в этих местах кровоток замедляется. Так, вены верхних конечностей сдавливаются, проходя под острым углом над I ребром. В венах шеи давление может понижаться под влиянием атмосферного давления. Вены, проходящие через брюшную полость, сдавливаются внутренними органами и внутрибрюшным давлением. Так как крупные вены могут создавать некоторое сопротивление, то в более мелких периферических венах давление обычно на 4–6 мм рт.ст. выше давления в правых отделах сердца.

· Повышение давления в правом предсердии выше его нормального (нулевого) уровня вынуждает кровь двигаться обратно в крупные вены, расширяя их. В периферических венах оно не повышается до тех пор, пока давление в правом предсердии не превысит величины от +4 до +6 мм рт.ст. Дальнейшее повышение давления в правом предсердии вызывает рефлекторное увеличение периферического венозного давления.

· Влияние внутрибрюшного давления. В брюшной полости в положении лёжа давление составляет 6 мм рт.ст. Оно может повышаться от 15 до 30 мм. рт.ст. при беременности, большой опухоли или появлении избыточной жидкости в брюшной полости (асците). В этих случаях давление в венах нижних конечностей становится выше внутрибрюшного.

· Гравитация и венозное давление. На поверхности тела давление жидкой среды равно атмосферному давлению. Давление в организме растёт по мере продвижения вглубь от поверхности тела. Это давление — результат воздействия силы тяжести воды, поэтому оно называется гравитационным (гидростатическим) давлением. Влияние гравитации на сосудистую систему обусловлено весом крови в сосудах. Когда человек стоит, то давление в правом предсердии остаётся близким к 0 мм рт.ст. Под действием тяжести крови давление в области стоп составляет +90 мм рт.ст. Венозное давление крови на других уровнях тела распределяется пропорционально от 0 до 90 мм рт.ст. Внутри черепа в синусах твёрдой мозговой оболочки существует отрицательное давление. Это необходимо учитывать при хирургических вмешательствах, поскольку воздух при травмировании синуса может «засосаться» в вены и вызвать воздушную эмболию лёгочной артерии.

· Мышечный насос и клапаны вен. Вены нижних конечностей окружены скелетными мышцами, сокращения которых сдавливают вены. Пульсация соседних артерий также оказывает сдавливающее влияние на вены. Поскольку венозные клапаны препятствуют обратному движению, то кровь движется к сердцу. Как показано рис. 23–20Б, клапаны вен ориентированы для продвижения крови в направлении сердца.

Во время продолжительного неподвижного стояния, когда полностью проявляется действие силы тяжести, давление в области стоп достигает 90 мм рт.ст. Застой крови в конечностях уменьшает венозный возврат к сердцу и понижает сердечный выброс. Давление в капиллярах значительно возрастает, вызывая движение жидкости из сосудов в межклеточные пространства. В результате возникают отёк ног и уменьшение ОЦК от 10 до 20%.

· Присасывающее действие сокращений сердца. Изменения давления в правом предсердии передаются большим венам. Давление в правом предсердии резко падает во время фазы изгнания систолы желудочков, потому что предсердно-желудочковые клапаны втягиваются в полость желудочков, увеличивая ёмкость предсердия. Происходит всасывание крови в предсердие из крупных вен, и поблизости от сердца венозный кровоток становится пульсирующим.

· Нарушение функций клапанов вен. Клапаны венозной системы часто теряют свою функциональную значимость, если вены чрезмерно растягиваются повышенным венозным давлением в течение продолжительного времени (например, при беременности или вынужденном длительном стоянии на ногах). Растяжение вен увеличивает их поперечное сечение, а створки клапанов в размерах не увеличиваются и не могут плотно смыкаться. Происходит дальнейшее нарастание венозного давления из-за ослабления работы венозного насоса, диаметр вен ещё более увеличивается и, наконец, функция клапанов полностью нарушается. Так формируется варикозное расширение вен. Высокое венозное и капиллярное давление (оно существенно превышает тканевое) приводят к постоянному отёку ног. Отёк, в свою очередь, нарушает адекватное поступление питательных веществ из капилляров в мышцы и кожу — возникают атрофические изменения в мышцах и коже, вплоть до образования кожных язв и гангрены.

Депонирующая функция вен

Более 60% ОЦК находится в венах в силу их высокой податливости. При большой кровопотере и падении АД возникают рефлексы с рецепторов каротидных синусов и других рецепторных сосудистых областей, активирующие симпатические нервы вен и вызывающие их сужение. Это приводит к восстановлению многих реакций системы кровообращения, нарушенных кровопотерей. Действительно, даже после потери 20% общего объёма крови система кровообращения восстанавливает свои нормальные функции за счёт высвобождения резервных объёмов крови из вен. В целом к специализированным участкам кровообращения (так называемым «депо крови») относят: печень, синусы которой могут высвобождать в кровообращение несколько сотен миллилитров крови; селезёнку, способную высвобождать в кровообращение до 1000 мл крови, крупные вены брюшной полости, накапливающие более 300 мл крови, подкожные венозные сплетения, способные депонировать несколько сотен миллилитров крови.

Микроциркуляция

Функционирование сердечно-сосудистой системы поддерживает гомеостатическую среду организма. Функции сердца и периферических сосудов скоординированы для транспорта крови в капиллярную сеть, где осуществляется обмен между кровью и тканевой жидкостью. Перенос воды и веществ через стенку сосудов осуществляется посредством диффузии, пиноцитоза и фильтрации. Эти процессы происходят в комплексе сосудов, известном как микроциркуляторная единиця. Микроциркуляторная единица состоит из последовательно расположенных сосудов, это концевые (терминальные) артериолы, метартериолы, прекапиллярные сфинктеры, капилляры, венулы. Кроме того, в состав микроциркуляторных единиц включают артерио-венозные анастомозы.

Организация и функциональная характеристика

Функционально сосуды микроциркуляторного русла подразделяют на резистивные, обменные, шунтирующие и ёмкостные.

· Резистивные сосуды

Резистивные прекапиллярные сосуды: мелкие артерии, терминальные артериолы, метартериолы и прекапиллярные сфинктеры. Прекапиллярные сфинктеры регулируют функции капилляров, отвечая за: количество открытых капилляров, распределение капиллярного кровотока, скорость капиллярного кровотока, эффективную поверхность капилляров, среднее расстояние для диффузии.

Резистивные посткапиллярные сосуды: мелкие вены и венулы, содержащие в своей стенке ГМК. Поэтому, несмотря на небольшие изменения в сопротивлении, они оказывают заметное воздействие на капиллярное давление. Соотношение прекапиллярного к посткапиллярному сопротивлению определяет величину капиллярного гидростатического давления.

· Обменные сосуды. Эффективный обмен между кровью и внесосудистым окружением происходит через стенку капилляров и венул. Наибольшая интенсивность обмена наблюдается на венозном конце обменных сосудов, потому что они более проницаемы для воды и растворов.

· Шунтирующие сосуды — артериовенозные анастомозы и магистральные капилляры. В коже шунтирующие сосуды участвуют в регуляции температуры тела.

· Ёмкостные сосуды — небольшие вены, обладающие высокой степенью податливости.

· Скорость кровотока. В артериолах скорость кровотока составляет 4–5 мм/с, в венах — 2–3 мм/с. Эритроциты продвигаются через капилляры поодиночке, меняя свою форму из-за узкого просвета сосудов. Скорость движения эритроцитов — около 1 мм/с.

· Прерывистый кровоток. Ток крови в отдельном капилляре зависит прежде всего от состояния прекапиллярных сфинктеров и метартериол, которые периодически сокращаются и расслабляются. Период сокращения или расслабления может занимать от 30 с до нескольких минут. Такие фазные сокращения — результат ответной реакции ГМК сосудов на локальные химические, миогенные и нейрогенные влияния. Наиболее важный фактор, ответственный за степень открытия или закрытия метартериол и капилляров, — концентрация кислорода в тканях. Если содержание кислорода в ткани уменьшается, то частота прерывистых периодов кровотока возрастает.

· Скорость и характер транскапиллярного обмена зависят от природы транспортируемых молекул (полярные или неполярные вещества, см. главу 2), наличия в капиллярной стенке пор и эндотелиальных фенестр, базальной мембраны эндотелия, а также возможности пиноцитоза через стенку капилляра.

· Перенос через мембраны

Неполярные (жирорастворимые) вещества и мелкие незаряженные молекулы (O2, CO2, NH3 и вода) могут диффундировать непосредственно через стенку капилляров, без необходимости движения через поры. Скорость их диффузии через стенку капилляра во много раз выше скорости транспорта полярных молекул.

Полярные вещества (например, ионы Na+, K+, Cl–, Ca2+; различные небольшие, но полярные метаболиты, а также сахара, нуклеотиды, макромолекулы белка и нуклеиновых кислот) сами по себе не проникают через мембраны, для их транспорта необходимы переносчики и ионные каналы.

Разность концентраций веществ по обе стороны капиллярной мембраны влияет на скорость диффузии. Например, концентрация кислорода в крови капилляров в норме больше, чем в интерстициальной жидкости. Следовательно, больше кислорода движется из крови в ткань. Напротив, концентрация двуокиси углерода больше в тканях, чем в крови, и CO2 движется из тканей в кровь. Скорости диффузии необходимых веществ через капиллярную мембрану так велики, что небольшой разницы в концентрациях достаточно, чтобы вызвать адекватный транспорт между плазмой и интерстициальной жидкостью.

· Транскапиллярное движение жидкости определяется впервые описанным Старлингом соотношением между капиллярной и интерстициальной гидростатической и онкотической силами, действующими через капиллярную стенку..

· Капиллярное гидростатическое давление — основной фактор контроля транскапиллярного движения жидкости — определяется АД, периферическим венозным давлением, прекапиллярным и посткапиллярным сопротивлением. На артериальном конце капилляра гидростатическое давление составляет 30–40 мм рт.ст., а на венозном — 10–15 мм рт.ст. Повышение артериального, периферического венозного давления и посткапиллярного сопротивления или уменьшение прекапиллярного сопротивления будут увеличивать капиллярное гидростатическое давление.

· Онкотическое давление плазмы определяется альбуминами и глобулинами, а также осмотическим давлением электролитов. Онкотическое давление на всём протяжении капилляра остаётся относительно постоянным, составляя 25 мм рт.ст.

· Интерстициальная жидкость образуется путём фильтрации из капилляров. Состав жидкости аналогичен таковому у плазмы крови, исключая более низкое содержание белка. На коротких расстояниях между капиллярами и клетками тканей диффузия обеспечивает быстрый транспорт через интерстиций не только молекул воды, но и электролитов, питательных веществ с небольшой молекулярной массой, продуктов клеточного обмена, кислорода, углекислого газа и других соединений.

· Гидростатическое давление интерстициальной жидкости колеблется в пределах от –8 до +1 мм рт.ст. Оно зависит от объёма жидкости и податливости интерстициального пространства (способности накапливать жидкость без существенного повышения давления). Объём интерстициальной жидкости составляет от 15 до 20% общей массы тела. Колебания этого объёма зависят от соотношения между притоком (фильтрация из капилляров) и оттоком (лимфоотток). Податливость интерстициального пространства определяется наличием коллагена и степенью гидратации..

· Онкотическое давление интерстициальной жидкости определяется количеством белка, проникающим через стенку капилляров в интерстициальное пространство. Общее количество белка в 12 л интерстициальной жидкости тела немного больше, чем в самой плазме. Но поскольку объём интерстициальной жидкости в 4 раза больше объёма плазмы, концентрация белка в интерстициальной жидкости составляет 40% от содержания белка в плазме. В среднем коллоидно-осмотическое давление в интерстициальной жидкости составляет около 8 мм рт.ст.

Движение жидкости через стенку капилляра

Среднее капиллярное давление на артериальном конце капилляров на 15–25 мм рт.ст. больше, чем на венозном конце. В силу этой разницы давлений кровь фильтруется из капилляра на артериальном конце и реабсорбируется на венозном.

Таким образом, разность давлений, направленных наружу и внутрь капилляра, составляет 13 мм рт.ст. Эти 13 мм рт.ст. фильтрующего давления вызывают переход 0,5% плазмы на артериальном конце капилляра в интерстициальное пространство.

.

Необходимый исходный уровень знаний:

  1. Анатомические пути движения крови по сосудам и через сердце взрослого человека и плода;

  2. Морфо - функциональные особенности сосудистого русла обеспечивающей их функции;

  3. Основные законы гидродинамики и их применение для оценки гемодинамики;

План проведения занятия:

1. Вводное слово преподавателя о цели занятия и схеме его проведения. Ответы на вопросы студентов - 30 минут.

2. Устный опрос - 60 минут.

3. Учебно-практическая и исследовательская работа студентов - 150 минут.

Вопросы для самоподготовки к занятию:

1. Функциональная организация сосудистого русла. Типы и особенности кровеносных сосудов.

2. Механизмы движения крови по сосудам. Факторы, влияющие на движение крови по сосудам. Особенности движения крови по венам.

3. Основные показатели гемодинамики.

4. Артериальное давление: факторы его определяющие, основные показатели.

5. Методы исследования артериального давления.

6. Понятие о сосудистом тонусе.

7. Миогенные механизмы регуляции сосудистого тонуса (внутрисосудистое давление, метаболиты и др.).

8. Нервная регуляция сосудистого тонуса.

9. Сосудистые рефлексогенные зоны и их роль в регуляции тонуса сосудов.

10. Сосудодвигательный центр. Уровни центральной регуляции сосудистого тонуса (спинальный, бульбарный, гипотальмический, корковый).

11. Гуморальные механизмы регуляции сосудистого тонуса.

Учебно-практическая и исследовательская работа:

Задание № 1.

После изучения теоретического материала ответьте на следующие вопросы:

1. Какие физиологические закономерности определяют движение крови по сосудам?

2. Какие кровеносные сосуды называют резистивными и какие ёмкостными?

3. Какими сосудами представлено звено микроциркуляции, их физиологические особенности?

4. что такое объёмная и линейная скорости кровотока? чему равно время кругооборота крови?

5. Что характеризуют систолическое, диастологическое и пульсовое артериальное давление?

6. Как измеряют артериальное давление у человека?

7. Какова природа артериального пульса?

8. Как осуществляется иннервация сосудов?

9. Какие существуют гуморальные влияния на тонус сосудов?

10. Как и на какие сосуды действуют адреналин, вазопрессин и ангиотензин? 11. Какие продукты метаболизма вызывают расширение сосудов?

12. Как изменится кровяное давление при раздражении ядер гипоталамуса?

Задание № 2.

Проанализируйте ситуационные задачи.

1. Чему равна величина систолического объёма крови у 18-летнего юноши, величина АД которого равна 130/70 мм. рт. ст.?

2. Рассчитайте величину минутного объёма крови 20-летнего испытуемого, если его ЧСС 70 уд/мин., а АД-111/60 мм. рт. ст.?

3. Давление крови у 20-летнего 120/80 мм. рт. ст. Что означают эти цифры? Какова величина пульсового давления у этого обследуемого? О чем будет говорить повышение или понижение величины пульсового давления у него во время, например, мышечной работы?

4. Почему при введении в кровь адреналина АД вначале значительно повышается, а затем снижается?

5. Во время кровопускания наблюдают падение АД, которое затем восстанавливается до исходной величины. Каков механизм?

6. В сосудистое русло введено 200 мл. раствора Рингера. Артериальное давление сначала повышалось, но вскоре вернулось к исходному уровню. Каков механизм этого явления?

Задание № 3.

Обсудите с преподавателем методику измерения АД у человека, значение определяемых величин. Выполните следующие работы. Сделайте выводы.

1. Измерение артериального давления у человека непрямым методом (Практикум, с. 90-92).

2. Наблюдение кровообращения в плавательной перепонке лягушки (Практикум, с. 95-96).

Рекомендуемая литература:

  1. Материал лекций.

  2. Физиология человека: Учебник/Под ред. В.М.Смирнова

  3. Нормальная физиология. Учебное пособие./ В.П.Дегтярев, В.А.Коротич, Р.П.Фенькина,

  4. Физиология человека: В 3-х томах. Пер. с англ./ Под. Ред. Р. Шмидта и Г. Тевса

  5. Практикум по физиологии /Под ред. М.А. Медведева.

  6. Физиология. Основы и функциональные системы: Курс лекций/ Под ред. К. В.Судакова.

  7. Нормальная физиология: Курс физиологии функциональных систем. /Под ред. К.В.Судакова

  8. Нормальная физиология: Учебник/ Ноздрачев А.Д., Орлов Р.С.

  9. Нормальная физиология: учебное пособие : в 3 т. В. Н. Яковлев и др.

  10. Юрина М.А Нормальная физиология (учебно-методическое пособие).

  11. Юрина М.А. Нормальная физиология (краткий курс лекций)

  12. Физиология человека / Под редакцией А.В. Косицкого.-М.: Медицина, 1985.

  13. Нормальная физиология / Под ред. А.В. Коробкова.-М.; Высшая школа, 1980.

  14. Основы физиологии человека / Под ред. Б.И. Ткаченко.-Спб.; 1994.

ИТОГОВОЕ ЗАНЯТИЕ ПО теме «ФИЗИОЛОГИЯ КРОВООБРАЩЕНИЯ».

ВОПРОСЫ К СЕМИНАРУ:

  1. Характеристика фаз сердечного цикла. Изменение давления крови в полостях сердца в различные фазы сердечного цикла.

  2. Основные показатели деятельности сердца. Их зависимость от функционального состояния организма.

  3. Автоматия сердца: природа, проводящая система сердца, её особенности.

  4. Характеристика потенциала действия рабочих кардиомиоцитов.

  5. Физиологические свойства сердечной мышцы и её особенности.

  6. Характеристика сократимости сердечной мышцы.

  7. Механизмы гомеометрической и гетерометрической саморегуляции деятельности сердца.

  8. Характеристика влияний симпатических и парасимпатических нервов и их медиаторов на деятельность сердца.

  9. Рефлекторная регуляция деятельности сердца.

  10. Гуморальная регуляция деятельности сердца.

  11. Электрокардиография: принцип метода, типы отведений, дипольная теория.

  12. Характеристика зубцов и интервалов кардиограммы.

  13. Анализ собственной кардиограммы.

  14. Строение и особенности проводящей системы сердца.

  15. Основные методы исследования деятельности сердца.

  16. Электрокардиография: принцип метода, отведения ЭКГ.

  17. Основной водитель ритма сердца, механизмы его ритмообразовательной функции. Особенности возникновения ПД в клетках синусного узла.

  18. Градиент автоматии, роль атриовентрикулярного узла и других отделов проводящей системы сердца.

  19. Анализ распространения возбуждения по сердцу.

  20. Возбудимость сердечной мышцы.

  21. Соотношение возбуждения, сокращения и возбудимости в течение кардиоцикла. Экстрасистолы, механизмы его образования.

  22. Функциональная организация сосудистого русла. Типы и особенности кровеносных сосудов.

  23. Механизмы движения крови по сосудам. Факторы, влияющие на движение крови по сосудам. Особенности движения крови по венам.

  24. Основные показатели гемодинамики.

  25. Артериальное давление: факторы его определяющие, основные показатели.

  26. Методы исследования артериального давления.

  27. Понятие о сосудистом тонусе.

  28. Миогенные механизмы регуляции сосудистого тонуса (внутрисосудистое давление, метаболиты и др.).

  29. Нервная регуляция сосудистого тонуса.

  30. Сосудистые рефлексогенные зоны и их роль в регуляции тонуса сосудов.

  31. Сосудодвигательный центр. Уровни центральной регуляции сосудистого тонуса (спинальный, бульбарный, гипоталамический, корковый).

  32. Гуморальные механизмы регуляции сосудистого тонуса.

Задачи к семинару.

  1. При расчете ЭКГ обследуемого продолжительность интервала PQ составила 0,24 сек. О чем это говорит?

  2. При анализе I стандартного отведения ЭКГ обследуемого,было обнаружено смещение сигмента S-T выше изолинии долее чем на 1 мм. и заострение зубца Т. О чем это может говорить?

  3. При анализе ЭКГ обследуемого в I и II стандартных обнаружена инверсия зубца Т. О чем это может говорить?

  4. При анализе ЭКГ в одном из стандартных отведений длительность должного интервала Q-T составила 0,36 сек., а фактического 0,42 сек. О чем это говорит?

  5. Под влиянием лекарственных веществ увеличилась проницаемость мембраны клетки для ионов натрия. Как изменится мембранный потенциал и почему?

  6. Как изменится мембранный потенциал, если заблокировать работу Na-К-АТФ-азы?

  7. До выполнения физической работы при ЧСС равной 70 уд/мин. МОК составляет 5л. Чему будет равен МОК, если во время работы систолический объём увеличивается на 20%, а ЧСС на 100%?

  8. Вычислите минутный объём крови, если ЧСС равна 80 уд/мин, Систолический объём 70 мл. Какое количество кислорода будет связано данным объёмом крови, если известно, что в 100 мл. крови обследуемого содержится 15 гр. гемоглобина?

  9. Два спортсмена (близкие по возрастным и физическим данным) участвуют в беге на 1500 метров. В конце дистанции МОК у первого составлял 28 л/мин. при ЧСС 200 уд/мин., у второго - 28 л/мин. при ЧСС 180 уд/мин. Кто из спортсменов более тренирован? Почему?

  10. При зондировании сердца здорового человека в один их моментов кардиоцикла давление в левом желудочке 70 мм.рт.ст. Какой фазе сердечного цикла это соответствует?

  11. При зондировании левого сердца здорового человека в один из моментов какрдиоцикла давление в левом желудочке 125 мм.рт.ст. При зондировании правого желудочка давление в нем было равным 20мм.рт.ст. Какой фазе это соответствует?

  12. Мембранный потенциал пейсмекерной клетки сердца увеличился на

  13. 20 мВ. Как это повлияет на частоту генерации автоматических импульсов?

  14. Мембранный потенциал пейсмекерной клетки сердца снизился на 20 мВ. Как это повлияет на частоту генерации автоматических импульсов?

  15. В физиологи-ий раствор поместили сердце и добавили туда какие-то ионы. После ослабления сердечной деятельности наступила остановка сердца в стадии диастолы. Какие ионы были добавлены?

  16. У человека ЧСС увеличилось до 150 уд/мин., АД повысилось до 180/90 мм.рт.ст. Как изменится сила сердечных сокращений?

ПЕРЕЧЕНЬ ПРАКТИЧЕСКИХ НАВЫКОВ:

  1. “Электрокардиография” ( см. Практикум, с. 69-71).

  2. Влияние раздражения блуждающего нерва на деятельность сердца лягушки (см. Практикум, с.78-80).

  3. Влияние раздражения симпатического нерва на деятельность сердца лягушки (см. Практикум, с.80).

  4. Влияние раздражения ядер блуждающего нерва на деятельность сердца (см. Практикум, с.80-81).

  5. Экзогенные рефлексы на сердце (см. Практикум, с.81-82).

  6. Гуморальная регуляция сердечной деятельности (см. Практикум с.82-84).

  7. Анализ проводящей системы сердца методом наложения лигатур (лигатуры Станниуса), (см. практикум, с.62-64).

  8. Возбудимость сердца, экстрасистола и реакция на ритмические раздражения. (см. Практикум с.67-69).

  9. Сердечный цикл у лягушки (см. Практикум по нормальной физиологии / Под ред. Н.А. Агаджаняна.-М., 1996.-С.60-62).

  10. Определение длительности сердечного цикла у человека по пульсу в покое и при физической нагрузке (см. Практикум, с65-66).

Рекомендуемая литература:

  1. Материал лекций.

  2. Физиология человека: Учебник/Под ред. В.М.Смирнова

  3. Нормальная физиология. Учебное пособие./ В.П.Дегтярев, В.А.Коротич, Р.П.Фенькина,

  4. Физиология человека: В 3-х томах. Пер. с англ./ Под. Ред. Р. Шмидта и Г. Тевса

  5. Практикум по физиологии /Под ред. М.А. Медведева.

  6. Физиология. Основы и функциональные системы: Курс лекций/ Под ред. К. В.Судакова.

  7. Нормальная физиология: Курс физиологии функциональных систем. /Под ред. К.В.Судакова

  8. Нормальная физиология: Учебник/ Ноздрачев А.Д., Орлов Р.С.

  9. Нормальная физиология: учебное пособие : в 3 т. В. Н. Яковлев и др.

  10. Юрина М.А Нормальная физиология (учебно-методическое пособие).

  11. Юрина М.А. Нормальная физиология (краткий курс лекций)

  12. Физиология человека / Под редакцией А.В. Косицкого.-М.: Медицина, 1985.

  13. Нормальная физиология / Под ред. А.В. Коробкова.-М.; Высшая школа, 1980.

  14. Основы физиологии человека / Под ред. Б.И. Ткаченко.-Спб.; 1994.

39