Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Учебники / Genetics and Auditory Disorders Keats 2002

.pdf
Скачиваний:
130
Добавлен:
07.06.2016
Размер:
3.86 Mб
Скачать

6

Autosomal and X-Linked Auditory Disorders

ANDREW J. GRIFfiTH and THOMAS B. FRIEDMAN

1. Introduction

Mutations in any one of more than two hundred different genes can cause hearing loss (Fig. 6.1). This remarkable genetic heterogeneity is a reflection of the great diversity of highly specialized proteins and cell types required for the electromechanical transduction of sound stimuli within the auditory system (Rubsamen and Lippe 1998). This chapter describes our rapidly evolving knowledge of the genes responsible for syndromic and nonsyndromic deafness. Two treatises of enduring merit predate the recent identification of many of the genes for syndromic forms of deafness, but their detailed clinical and classical genetic descriptions remain of great value (Gorlin et al. 1995; Konigsmark and Gorlin 1976).

The incidence of significant hearing loss among newborns is approximately 1/1,000 and about 50% of these cases appear to have a genetic etiology (Liu et al. 1994; Marazita et al. 1993; Morton 1991). The proportion of persons with late-onset hearing loss with a genetic origin is not known.

Many families have been described in which parents transmit defective genes to their offspring, resulting in hearing loss at birth or later in life (Fraser 1976; Konigsmark 1969; Nance and Sweeney 1975; Reardon et al. 1992). Dominant and recessive modes of inheritance were noted. The majority of nonsyndromic sensorineural hearing loss is recessive, 20% is dominant, and 1 to 3% is X-linked (Marazita et al. 1993). In each of a large number of multiplex families, the pattern of inheritance of hearing loss implicates a single major Mendelian trait, either sex-linked, autosomal dominant or autosomal recessive. Non-Mendelian inheritance of deafness due to mitochondrial mutations has also been reported and is the subject of Chapter 7.

Hearing loss can be caused by environmental insults such as perinatal trauma, prolonged loud noise exposure and barotrauma, injuries to the skull, radiation, as well as intrauterine or postnatal exposure to ototoxic drugs or infectious agents (Garetz and Schacht 1996; Nadol 1993; Prasher 1998). Susceptibility to some of these insults has an underlying genetic

121

122 A.J. Griffith and T.B. Friedman

6. Autosomal and X-Linked Auditory Disorders

123

(Figure caption followed on pp. 124–125)

124 A.J. Griffith and T.B. Friedman

FIGURE 6.1. Diagram of a normal male karyotype (46,XY) showing the location of the centromeres, the chromosome arms (short or p-arm and long or q-arm) and the major Giemsa-bands. The autosomes are numbered from 1 to 22. The designations for DFNA loci are shown as A1 to A36, while DFNB loci are shown as B1 to B28. The symbols for syndromic and nonsyndromic hearing loss loci that have been identified are underlined. When the same gene has been identified with mutant alleles associated with more than one syndrome and/or more than one nonsyndromic locus, the loci are separated by a slash (/). Loci separated by a comma map to a similar chromosomal interval. Notice that loci for syndromic and nonsyndromic deafness are found on all the autosomes and X-chromosome. The gene symbols for the syndromic deafness loci are listed in Table 6.5, along with a brief description of the phenotype. ACS1, Apert syndrome; ACS5, Pfeiffer syndrome; ADFN, Albinismdeafness syndrome; AGU, Aspartylglucosaminuria; ALD, Adrenoleukodystrophy; ALSS, Alström syndrome; BJS, Bjornstad syndrome; ATS, X-linked Alport syndrome; BOR, Branchio-oto-renal syndrome; BOR2, Branchio-otic syndrome with commissural lip pits; BOS, Branchio-otic syndrome; BTD, Biotinidase deficiency; CCD, Cleidocranial dysplasia; CDHS, Craniofacial-deafness-hand syndrome; CFD1, Crouzon syndrome; CLS, Coffin-Lowry syndrome; CMDJ Craniometaphyseal dysplasia, Jackson type; CMT1A, Charcot-Marie-Tooth disease, type 1A; CMT1B, Charcot-Marie-Tooth disease, type 1B; CMT2, Charcot-Marie-Tooth disease, type 2; CMT4A, Charcot-Marie-Tooth disease, type 4A; CMT4B, Charcot-Marie- Tooth disease, type 4B; CMTX, Charcot-Marie-Tooth disease, X-linked dominant; CMTX2, Charcot-Marie-Tooth disease, X-linked recessive; CSA, Cockayne syndrome, type I/A; CSB, Cockayne syndrome, type II/B; dRTA, Renal tubular acidosis with sensorineural deafness; DGS, DiGeorge syndrome; DGS2, DiGeorge syndrome; EEC1, Ectrodactyly, ectodermal dysplasia, and cleft lip/palate syndrome, type I; EEC2, Ectrodactyly, ectodermal dysplasia, and cleft lip/palate syndrome, type II; FGS, FG syndrome; FRDA, Friedreich ataxia type I; GALC, Krabbe disease; GJB3, gap junction protein b-3; GLA, Fabry disease; GUST, Gustavson syndrome; HMSN IV, Refsum disease; HMSNL, Hereditary motor and sensory neuropathy, Lom type; HYP1, Hypophosphatemia Type I; HYP2, Hypophosphatemia Type II; IDS, Hunter syndrome; IDUA, Hurler syndrome; IRD, Refsum disease, infantile form; JLNS1, Jervell and Lange-Nielsen syndrome; JLNS2, Jervell and LangeNielsen syndrome; KHM, Vohwinkel syndrome, classic form; KAL1, Kallmann syndrome; LOR, Vohwinkel syndrome, variant form; MANB1, Beta mannosidosis; Marshall, Marshall syndrome MFS1, Marfan syndrome; MFS2, Marfan syndrome; MTS, Mohr-Tranebjaerg syndrome, Jensen syndrome; ND, Norrie disease; NEU, Sialidosis; NF2, Neurofibromatosis type 2; NPC, Niemann-Pick type C disease; NS1, Noonan syndrome; OASD, Ocular albinism with sensorineural deafness; OFD1, Orofaciodigital syndrome, type 1; OI, Osteogeneis imperfecta; OPD1, Otopalatodigital syndrome, type I; OPTA2, Osteopetrosis type II; OPTB1, Osteopetrosis; OSMED, Chondrodystrophy with sensorineural deafness; OTS, otosclerosis; PBT, Piebaldism; PDB1, Paget disease; PDB2, Paget disease; PDS, Pendred syndrome; SCS, Saethre-Chotzen syndrome; SEDC, Spondyloepiphyseal dysplasia congenita; SMS, Smith-Magenis syndrome; STL1, Stickler syndrome; STL2, Stickler syndrome; STL3, Stickler syndrome; SYM1, Symphalangism; SYNS1, Multiple synostoses syndrome; TBS, Townes-Brocks syndrome; TCOF1, Treacher Collins’ syndrome; TIETZ, Tietze’s syndrome; TSD, Tay-Sachs disease; USH1A, Usher syndrome type 1A; USH1B, Usher syndrome type 1B; USH1C, Usher syndrome type 1C; USH1D,

6. Autosomal and X-Linked Auditory Disorders

125

Usher syndrome type 1D; USH1E, Usher syndrome type 1E; USH1F, Usher syndrome type 1F; USH2A, Usher syndrome type 2A; USH2B, Usher syndrome type 2B; USH3, Usher syndrome type 3; VBCH, van Buchem disease; VCFS, Velocardiofacial syndrome; WFS, Wolfram syndrome; WS1, Waardenburg syndrome type 1; WS2, Waardenburg syndrome type 2; WS3, Waardenburg syndrome type 3; WS4, Waardenburg syndrome type 4; XPA, Xeroderma pigmentosum.

component (Fischel-Ghodsian 1998). Since hearing loss can be acquired, it is to be expected that, among hearing impaired members of a large family with a high incidence of deafness, some individuals may have hearing loss due to a nongenetic cause. These individuals are said to be phenocopies (Hadorn 1961). Audiological evaluations may not be able to distinguish between hereditary and acquired deafness, in which case the information derived from a thorough clinical history is invaluable.

The ongoing identification and inevitable elucidation of the functions of the genes for hearing loss provides entry points toward an integrated understanding of auditory system structure, function, and development. From a public health perspective, the insights gained from molecular genetic studies may guide the development of strategies to slow the rate of progressive hearing loss. Even without specific medical treatment, knowledge of impending hearing loss allows timely speech and communication rehabilitation. It is also anticipated that results of genetic tests will be used to counsel individuals who are at risk for hearing loss.

2. Classification and Evaluation of Hearing Loss

2.1 Audiometric

Pure-tone audiometry can be used to classify hearing loss as conductive, sensorineural, or mixed, which is a combination of conductive and sensorineural. Conductive hearing loss is associated with pathology affecting any of the anatomic components that mechanically transduce sound to the cochlea. Thus, abnormalities of the external ear, ear canal, tympanic membrane (eardrum), ossicles, oval window (the interface of the ossicular chain with the cochlea), round window, or middle ear space may cause conductive hearing loss. Sensorineural hearing loss may be associated with dysfunction of any of the components of the auditory pathway that convert the physical stimulus of sound into an electrical stimulus that is transmitted to the auditory cortex. Sensorineural hearing loss may therefore be caused by lesions of the cochlea, auditory (cochlear; eighth cranial) nerve, auditory brainstem, or even higher order auditory structures within the brain.

The severity of hearing loss is also routinely categorized. Measured puretone hearing thresholds may be used to classify hearing loss as mild (26 to

126 A.J. Griffith and T.B. Friedman

40 dBHL), moderate (41 to 55 dBHL), moderately severe (56 to 70 dBHL), severe (71 to 90 dBHL), or profound (greater than 90 dBHL). Thresholds less than 25 dBHL are considered normal. The degree of hearing loss is often not uniform across the tested frequencies (typically 250 Hz to 8 kHz). For example, there may be normal hearing at low and middle frequencies, with severe hearing loss at high frequencies. This type of hearing loss is described as high-frequency or down-sloping sensorineural hearing loss, since the line connecting the pure-tone threshold levels slopes down in the higher frequencies, which are recorded on the right side of an audiogram. Sensorineural hearing loss may also be low-frequency or up-sloping (Lesperance et al. 1995), or it may be U-shaped, predominantly affecting middle frequencies. A flat audiogram refers to relatively similar thresholds across the tested frequencies.

Figure 6.2 illustrates several of the many possible distinct audiometric patterns of hearing loss. These descriptions provide concise and useful categorizations of audiometric findings, but in practice many audiograms do not fit neatly into any one category. Furthermore, the degree and type of hearing loss between two ears of a given patient may be asymmetric. In a family segregating a gene causing hearing loss, subjective evaluations of audiometric data are sometimes required to distinguish between an affected and an unaffected individual. This distinction needs to be made before genotyping begins, since mistakes in assigning affection status can jeopardize a genetic analysis, particularly in families with progressive or late-onset deafness. Based on data of hearing thresholds of ageand sexmatched normal-hearing individuals, Govaerts and coworkers (1998) have proposed an algorithm to more objectively differentiate between affected and unaffected persons. Furthermore, ageand sex-specific reference ranges for hearing levels and longitudinal changes are available for a Caucasian population of 681 men and 416 women (Morrell et al. 1996). The subjects were rigorously screened for otological disorders and noise exposure in order to remove these confounding variables and provide a normative data set.

2.2 Clinical

It is important to distinguish between syndromic and nonsyndromic hearing impairment. Specifically, it should be noted whether the hearing loss is inherited in association with any other disorders or abnormalities, even if they do not fit neatly into any previously described syndromes. An additional distinction regards the onset of hearing loss, which is often described in relation to the development of speech because adequate auditory function is important for the development of spoken language. Hearing impairment occurring prior to speech development is called prelingual, whereas that occurring after speech development is called postlingual. Given the wide range of age of onsets of postlingual hearing loss, this term is impre-

6. Autosomal and X-Linked Auditory Disorders

127

cise and, for most purposes, probably best replaced by a simple description of age of onset (e.g., onset in adolescence, third decade, etc.).

Except in cases of congenital profound deafness, the temporal course of the hearing impairment is also described. Hearing loss may be stable or progressive, and progression is often observed in association with dominant inheritance of hearing loss (Table 6.1). Fluctuation may be present in other types of hearing loss, such as that associated with recurrent otitis media or Meniere’s disease (see DFNA9, 3.7.2). Fluctuating or incremental hearing loss may also be associated with head trauma or congenital inner ear malformations such as Mondini dysplasia or enlarged vestibular aqueducts, or a combination of these two factors (Jackler and De La Cruz 1989; Levenson et al. 1989; Schuknecht 1980). These inner ear malformations sometimes have a genetic basis, as there have been several reports of familial cases (Abe et al. 1997; Chan et al. 1991; Griffith et al. 1996; Griffith et al. 1998).

2.3 Temporal Bone Histopathology

Inner ear neurosensory tissue for histologic examination is almost never accessible in the living patient. Therefore, histopathologic studies of postmortem human temporal bone specimens can be helpful for correlating anatomic and histologic findings with clinical observations in the myriad disorders affecting auditory and vestibular function (Schuknecht 1993). However, it has been difficult to derive broad conclusions about the pathogenesis of hereditary hearing loss due to the paucity or absence of specimens for many of the disorders, as well as artifactual changes arising from delayed or inadequate preservation of the specimens.

FIGURE 6.2. Pure-tone audiograms: (A) Bilateral conductive hearing loss associated with bilateral otitis media; (B) Bilateral high-frequency sensorineural hearing loss due to noise exposure, demonstrating a typical “noise notch” at 4,000 Hz; (C) Unilateral moderate to profound sensorineural hearing loss in a patient who received intratympanic gentamicin (aminoglycoside therapy); (D, E, F) Differing patterns of sensorineural hearing loss in three affected members of a single kindred segregating Waardenburg syndrome. Panel D illustrates a unilateral low-frequency hearing loss, panel E illustrates a symmetric, fairly flat mild to moderate loss, and panel F shows a profound right-sided loss with a left-sided, mild to moderate high-frequency loss. SRT is the speech reception threshold, the softest level at which a person can understand 50% of spoken words. SDS is the speech discrimination score, the percentage of word stimuli that are perceived correctly. Although bone conduction thresholds are not shown in B and E, previous audiometric evaluations on these patients had demonstrated that the hearing loss was sensorineural, with no significant difference between boneand air-conduction thresholds. Reliable speech discrimination scores were not obtained as part of the evaluations shown in C and E due to the young age of the patients.

128 A.J. Griffith and T.B. Friedman

6. Autosomal and X-Linked Auditory Disorders

129

TABLE 6.1. Nonsyndromic autosomal dominant deafness loci (DFNA)

 

 

Gene

Onset of Hearing

 

 

 

 

Locus

Location

(see Table 6.4)

Loss (yr)

Phenotype/Comments

Mouse Model

Selected References

DFNA1

5q31

HDIA1

~10

Progressive SNHL to profound

sy

Leon et al. 1981

 

 

 

 

levels by age 40 yrs; initially

 

 

Leon et al. 1992

 

 

 

 

affects low frequencies

 

 

 

DFNA2a

1p34–p35

GJB3 (Cx31)

Variable, 10–30 Progressive SNHL; 30 to >55 dBHL

 

 

Coucke et al. 1994

 

 

 

 

by age 30 to 40 yrs; initially affects

 

 

Van Camp et al. 1997

 

 

 

 

high frequencies

 

 

Coucke et al. 1999

 

 

 

 

 

 

 

Liu et al. 2000

 

 

etc.

 

 

 

 

Xia et al. 1998

 

1p34

KCNQ4

Variable,

Progressive SNHL of 1 dB/yr, initially

 

 

Coucke et al. 1999

 

 

 

congenital; 10

affects high frequencies

 

 

Kubisch et al. 1999

DFNA3a

13q12

GJB2 (Cx26 )

Approximately 4

All frequencies affected, stable or

Gjb2 knockout

Chaib et al. 1994

 

 

(see DFNB1)

 

slowly progressive SNHL; 50%

 

 

Denoyelle et al. 1997

 

 

 

 

profound, 50% with 70 to 100 dBHL

 

 

Gabriel et al. 1998

 

13q12

GJB6 (Cx30)

20–40

Mild to moderate progressive SNHL,

 

 

Grifa et al. 1999

 

 

 

 

initially affects high frequencies in

 

 

 

 

 

 

 

a small family

 

 

 

DFNA4

19q13

 

20–30

Fluctuating, progressive SNHL to

quivering, qv

Chen et al. 1995

 

 

 

 

profound levels by fourth decade;

 

 

 

 

 

 

 

all frequencies affected

 

 

 

DFNA5

7p15

DFNA5

20–30

Progressive SNHL; initially affects

 

 

Van Laer et al. 1997

 

 

 

5–15

high frequencies

 

 

Van Laer et al. 1998

DFNA6

4p16.3

 

5–15

Progressive SNHL to 40 to 50 dBHL

tilted, tlt

Lesperance et al. 1995

 

 

 

 

by 15 yrs; initially affects low

 

 

 

 

 

 

 

frequencies

 

 

 

DFNA7

1q21–q23

 

6–15

Progressive SNHL to >45 dBHL by

 

 

Fagerheim et al. 1996

 

 

 

 

15 yrs; initially affects high

 

 

 

 

 

 

 

frequencies

 

 

 

DFNA8/12

11q22–24

TECTA

Prelingual, early

Stable mild-severe SNHL

 

 

Verhoeven et al. 1997

 

 

(see DFNB21)

childhood

 

 

 

Balciuniene et al. 1998

 

 

 

 

 

 

 

Verhoeven et al. 1998

Friedman .B.T and Griffith .J.A 130