
- •Механическое движение. Системы отсчета.
- •2. Основные кинематические характеристики.
- •3. Равномерное прямолинейное движение.
- •4. Равнопеременное движение.
- •6. Угловые скорость и ускорение и их связь с параметрами поступательного движения.
- •9. Равновесие твердого тела.
- •10. Работа и кинетическая энергия.
- •11. Законы сохранения в механике
- •12. Упругие силы.
- •17. Уравнение состояния идеального газа.
- •18. Теплота и работа.
- •19. Внутренняя энергия идеального газа.
- •20. Теплоемкость.
- •22. Работа при основных изопроцессах.
- •23. Фазовые переходы.
- •25. Взаимодействие зарядов. Закон Кулона.
- •27. Закон Гаусса.
- •29. Связь потенциала с напряженностью электрического поля.
- •33. Электрический ток в жидкостях. Закон электролиза фарадея.
- •35. Индукция и напряженность магнитного поля. Закон Био-Савара-Лапласа.
- •38. Магнитное поле в вещ-ве. Понятие о диа-, пара- и ферромагнетизме.
- •39. Электромгнитные колебания.
- •43. Интерференция монохроматических волн. Когерентность.
- •48. Атом водорода.
- •49. Волновая функция и ее смысл.
- •51. Зонная теория электропроводности.
- •53. Естественная радиоактивность. Закон радиоактивного распада.
- •Законы радиоактивного распада ядер
- •55. Тепловые машины.
- •56. Переменный ток.
39. Электромгнитные колебания.
ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ
ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ
взаимосвязанные колебания электрич. (E) и магн. (Н) полей, составляющих единое электромагнитное поле. Распространение Э. к. происходит в виде электромагнитных волн. Э. к. представляют собой совокупность фотонов, и только при очень большом числе фотонов их можно рассматривать как непрерывный процесс.
Различают вынужденные Э. к., поддерживаемые внеш. источниками, и собственные колебания, существующие и без них. В неограниченном пр-ве или в системах с потерями энергии (диссипативных) возможны собств. Э. к. с непрерывным спектром частот. Пространственно огранич. консервативные (без потерь энергии) системы имеют дискретный спектр собств частот, причём каждой частоте соответствует один или неск. независимых типов колебаний (мод). Напр., между двумя отражающими плоскостями в вакууме, отстоящими друг от друга на расстояние l, возможны только синусоидальные Э. к. с круговыми частотами wnпpс/l, где n — целое число. Собств. колебания имеют вид синусоидальных стоячих волн, в к-рых колебания векторов Е и Н сдвинуты во времени на T/4, а пространств. распределения их амплитуд смещены на l/4, так что максимумы (пучности) Е совпадают с нулями (узлами) Н, и наоборот. В таких Э. к. энергия в среднем не переносится в пр-ве, но внутри каждого четвертьволнового участка между узлами полей происходит независимая периодич. перекачка электрич. энергии в магнитную и обратно.
Представление Э. к. в виде суперпозиции мод с дискретным или непрерывным спектром допустимо для любой сложной системы проводников и диэлектриков, если поля, токи, заряды в них связаны между собой линейными соотношениями. В квазистационарных системах, размеры к-рых <-l области, где преобладают электрич. или магн. поля, могут быть пространственно разделены и сосредоточены в отд. элементах: Е — в ёмкостях С, Н — в индуктивностях L. Типичный пример системы с сосредоточенными параметрами - - колебательный контур, где происходят колебания зарядов на обкладках конденсаторов и токов в катушках самоиндукции. Э. к. в ограниченных консервативных системах с распределёнными параметрами С и L имеют дискретный спектр собств. частот.
В средах эл.-магн. поле взаимодействует с заряж. ч-цами (эл-нами, ионами), создавая индуциров. токи. Токи проводимости обусловливают потери энергии и затухание Э. к.; токи, связанные с поляризацией и намагниченностью среды, определяют значения её диэлектрич. и магн. проницаемостей, а также скоростьраспространения в ней эл.-магн. волн и спектр собств. частот Э. к. Если индуциров. токи зависят от E и Н нелинейно, то период, форма и др. хар-ки Э. к. зависят от их амплитуд (см. НЕЛИНЕЙНЫЕ СИСТЕМЫ); при этом принцип суперпозиции недействителен и может происходить перекачка энергии Э. к. от одних частот к другим (см. НЕЛИНЕЙНАЯ ОПТИКА). На этом основаны принципы работы большинства генераторов, усилителей и преобразователей частоты Э. к.
Возбуждение Э. к. в устройствах с сосредоточенными параметрами, как правило, осуществляется путём прямого подключения к ним генераторов, в ВЧ устройствах с распределёнными параметрами — при помощи элементов связи (вибраторов, петель связи, рамок, отверстий и др.), а в оптич. устройствах — применением линз, призм, отражающих полупрозрачных зеркал и т. д.