Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Bilety_po_matanu.docx
Скачиваний:
443
Добавлен:
29.03.2016
Размер:
7.93 Mб
Скачать

6. Неопределенный интеграл и его свойства.

Неопределённый интеграл для функции f(x) - совокупность всех первообразных для функции f(x) на промежутке X

Обозначается символом , где С – производная постоянная, f(x) – подынтегральная функция, f(x)dx–подынтегральное выражение, х – переменная интегрирования.

Свойства:

1) Производная от неопределённого интеграла равна подынтегральной функции, а дифференциал – подынтегральному выражению:

2) Определённый интеграл от производной некой функции равен самой функции + произвольная постоянная C:

3) Неопределённый интеграл от дифференциала некой функции равен этой функции + произвольная постоянная С:

4) Постоянный множитель А (А≠0) можно выносить за знак неопределённого интеграла:

5) Неопределённый интеграл от алгебраической суммы нескольких функций равен алгебраической сумме интегралов этих функций (если каждый из них существует):

7. Таблица интегралов.

8. Методы интегрирования неопределенного интеграла: непосредственное, подстановки, по частям, разложение дроби на простейшие, тригонометрических функций.

1) Непосредственное интегрирование заключается в преобразовании подынтегральной функции к табличному виду с использованием основных свойств интеграла.

2) Замена переменной (метод подстановки) в неопределённом интеграле состоит в том, что при вынесении интеграла вместо переменной х вводится новая переменная t, связанная с x определённой зависимостью x=γ(t), где γ(t) монотонна и дифференцируема, тогда справедливо равенство

3) Интегрирование по частям: если функции u= γ(u) и u=Ψ(х) непрерывно дифференцируемы на некотором промежутке, то справедлива формула:

Эта формула называется формулой интегрирования по частям. Применяется для интегрирования произведений и таких функций, как lnx, arcsinx, arccosx, степенной и тригонометрической, степенной и обратной, степенной и логарифмической и других функций.

4) Интегрирование дробей. Элементарными дробями называются дроби следующих 4-ёх типов: 1) ; 2); 3); 4), гдеm, n – натуральные числа (m≥2, n≥2, b2-4ac<0)

Дробь называется правильной, если степень числителя меньше степени знаменателя, в противном случае дробь называется неправильной.

Если –правильная рациональная дробь, знаменатель P(x) которой представлен в виде линейных и квадратичных множителей P(x)=, то эта дробь может быть разложена на элементарные дроби по схеме:

=+…+…+++…++++…+,где A1…Ak, B1 … Bp, M1…Me, N1…Nl – некоторые действительные числа. Коэффициенты Аi, Bi, Mi, Ni находят методом неопределенных коэффициентов или методом частных значений. Для этого необходимо привести равенства к общему знаменателю, приравнять коэффициенты при одинаковых степенях x в левой и правой частях полученного тождества и решить систему линейных уравнений относительно искомых коэффициентов. Можно определить коэффициент и другим способом, придавая в полученном тождестве переменной х произвольное числовое значение.

5) Интегрирование тригонометрических функций: универсальная тригонометрическая подстановка.

Интеграла вида ,где R – рациональная функция, приводятся к интегралам от рациональных функций с помощью универсальной тригонометрической подстановки: tg=t

В результате подстановки: sinx==cosx==x=2arctg(t) dx=

Интегралы вида

1) Один из показателей m или n – нечетное положительное число.

Если n - нечетное положительное число, то подстановка sin x=t

Если m - нечетное положительное число, то подстановка cos x=t

2) Оба показателя степени m и n – четные положительные числа. Надо преобразовать подынтегральную функцию с помощью формул:

sinx*cosx=½sin(2x)

Интегралы вида ,,.Подынтегральную функцию преобразовываем с помощью тригонометрических формул:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]