
- •1. Определение функции нескольких переменных. Основные понятия.
- •2. Область определения и область значений функции нескольких переменных. График функции нескольких переменных. (см1)
- •3. Предел и непрерывность функции нескольких переменных.
- •4. Дифференцируемость функции нескольких переменных, частные производные, полный дифференциал.
- •5. Экстремум функции двух переменных: необходимое и достаточное условия.
- •6. Неопределенный интеграл и его свойства.
- •7. Таблица интегралов.
- •8. Методы интегрирования неопределенного интеграла: непосредственное, подстановки, по частям, разложение дроби на простейшие, тригонометрических функций.
- •9. Определенный интеграл и его геометрический смысл
- •10. Свойства определенного интеграла
- •11. Формула ньютона-лейбница (основная формула интегрального исчисления (!) )
- •12. Методы интегрирования определенного интеграла
- •13) Геометрические приложения определенного интеграла
- •14. Несобственные интегралы первого рода
- •15. Несобственные интегралы второго рода
- •16. Дифференциальные уравнения. Основные понятия.
- •19. Линейные дифференциальные уравнения 1-го порядка и уравнение Бернулли.
- •27. Элементы комбинаторики: правила суммы и произведения.
- •28. Алгебра событий: сумма, произведение событий. Противоположные события. Примеры.
- •29. Теорема сложения вероятностей для несовместных событий.
- •30. Зависимые и независимые события. Условная вероятность.
- •31. Теорема умножения вероятностей для зависимых и независимых событий.
- •32. Теорема сложения вероятностей для совместных событий.
- •33. Формула полной вероятности и формулы Байеса.
- •34. Повторные независимые испытания: постановка задачи, формула Бернулли.
- •35. Локальная теорема Муавра-Лапласа: формулировка теоремы, приближенная формула.
- •40. Закон распределения и функция распределения дискретной случайной величины.
- •41. Свойства интегральной функции распределения.
- •47. Числовые характеристики непрерывных случайных величин.
- •52. Закон больших чисел: неравенство Чебышева.
- •53. Теорема Чебышева.
- •54. Теорема Бернулли.
- •55. Понятие о центральной предельной теореме Ляпунова.
- •56. Генеральная совокупность и выборка: основные определения и понятия.
- •57. Статистическое распределение. Полигон и гистограмма.
- •58. Точечные и интервальные статистические оценки и их свойства.
- •59. Доверительный интервал для оценки неизвестного математического ожидания нормального распределения генеральной совокупности при известном среднем квадратическом отклонении вычисляется по формуле
- •60. Корреляция и регрессия. Метод наименьших квадратов.
- •61. Проверка статистических гипотез. Основные понятия.
60. Корреляция и регрессия. Метод наименьших квадратов.
61. Проверка статистических гипотез. Основные понятия.
Статистическая гипотеза- гипотеза либо о виде неизвестного распределения, либо о величине неизвестного параметра известного распределения.
Различают нулевую (основную) гипотезу и конкурирующую(альтернативную) гипотезу.
Существуют простые(содержат одно предположение) и сложные(содержат конечное или бесконечное число простых гипотез).
Например нулевая и простая гипотеза: х=5;
Конкурирующая: х не равно 5
Сложная: х>5
В результате проверки могут быть допущены ошибки двух родов:
Ошибка 1 рода - отвергнута правильная гипотеза
Ошибка 2 рода – принята неправильная гипотеза
Статистическим критерием называется случайная величина K, которая служит для проверки нулевой гипотезы.
Наблюдаемым значением Kнабл называют значение критерия вычисленное по выборке.
После выбора определенного критерия множество всех его возможных значений разбивают на два непересекающихся подмножества: одно из них содержит значение критерия, при которых нулевая гипотеза отвергается (критическая область), а другое – при которых она принимается (область принятия).
Основной принцип проверки статистических гипотез можно сформулировать так : если наблюдаемое значение критерия принадлежит критической области – гипотезу отвергают, если принадлежит области допустимых значений – принимают.
Критическими точками Ккр называют точки, отделяющие критическую область от области принятия гипотезы.
Правосторонней называют критическую область, определяемую неравенством: К>Ккр, Ккр>0;
Левосторонней называют критическую область, определяемую неравенством: К<Ккр, Ккр<0;
Двусторонней называют критическую область, определяемую неравенством: К<K1;K>K2, K2>K1
В частности, если критические точки симметричны относительно нуля, двусторонняя критическая область определяется неравенством: |K|>Kкр
Мощность критерия называют вероятность попадания критерия в критическую область при условии, что справедлива конкурирующая гипотеза. Другими словами, мощность критерия есть вероятность того, что нулевая гипотеза будет отвергнута, если верна конкурирующая гипотеза.
Пусть для проверки гипотезы принят определенный уровень значимости и выборка имеет фиксированный объём. Остается произвол в выборе критической области. Покажем, что её целесообразно построить так, чтобы мощность критерия была максимальной.
Предварительно убедимся, что если вероятность ошибки 2 рода равна β, то мощность равна 1 – β.
Действительно, если β- вероятность того, что принята нулевая гипотеза при условии, что верна конкурирующая гипотеза, то вероятность противоположного события- отвергнута нулевая гипотеза, причем справедлива конкурирующая, равна мощности критерия 1 – β..
Пусть мощность 1 – β возрастает, следовательно, уменьшается β. Таким образом, чем большемощность, тем меньше вероятность ошибки 2 рода.
Если уровень значимости уже выбран, то критическую область следует строить так, чтобы мощность критерия была максимальной.