
- •Содержание
- •Раздел I. Устройство и функционирование современной тэс,
- •Раздел II. Понятие энергетики, электроэнергетики, теплоэнергетики,
- •Раздел III. Энергетические ресурсы……………………………………… 26
- •Предисловие
- •Раздел I. Устройство и функционирование современной тэс, работающей на органическом топливе
- •Типы тепловых электростанций
- •1.2. Технологический процесс преобразования химической энергии топлива в электроэнергию на тэс
- •1.3. Знакомство с основным оборудованием тэс
- •1.3.1. Паровая турбина
- •1.3.2. Общие сведения о котельных агрегатах
- •Раздел II. Понятие энергетики, электроэнергетики, теплоэнергетики, теплофикации, теплоснабжения
- •Раздел III. Энергетические ресурсы
- •3.1. Возобнавляемые и невозобнавляемые источники энергии. Потребление, запасы отдельных видов энергии.
- •3.2. Перспективы использования твердого топлива. Основные месторождения ископаемого твердого топлива рф Значение угля в энергобалансе страны
- •Угольные месторождения.
- •3.3. Перспективы развития нефтяного комплекса и систем газоснабжения. Месторождения нефти и газа
- •3.4. Основные технические характеристики топлив
- •3.4.1. Основные технические характеристики мазута
- •3.4.2. Основные технические характеристики газа
- •Основные характеристики твердого топлива
- •Горение топлив
- •Раздел IV. О физических величинах, используемых в практике производства и потребления электрической и тепловой энергии
- •Раздел V. Некоторые свойства водяного пара и воды
- •Получение паров и их параметры
- •5.2. Кривые жидкости и сухого насыщенного пара
- •5.3. Критическая температура
- •5.4. Удельные объемы жидкости и пара, теплота парообразования
- •5.4.1. Удельные объемы жидкости и пара.
- •Теплота парообразования
- •5.5. Энтальпия и энтропия жидкости и пара
- •5.5.1. Энтальпия жидкости и пара
- •5.5.2. Энтропия жидкости и пара
- •Раздел VI.Таблицы и диаграммы водяных паров
- •6.1. Таблицы сухого насыщенного пара
- •6.2. Таблицы перегретого пара
- •Раздел VII. Истечение газов и паров. Дросселирование пара
- •7.1. Истечение газов и паров
- •7.2. Дросселирование пара
- •Раздел VIII. Общее представление о тепловой электростанции
- •8.1. Тепловой баланс тэс
- •8.2. Главный корпус тэс
- •8.6. Железобетонная градирня
- •8.3. Современные паровые турбины
- •8.4. Устройство паровой турбины
- •8.4.1. Конструкция основных узлов и деталей паровых турбин
- •8.4.2. Проточная часть и принцип действия турбины
- •8.5. Котельные установки
- •8.5.1. Технологическая схема котельной установки
- •8.5.2. Назначение и классификация котельных агрегатов
- •Практические занятия
- •Условие задачи
- •Методика решения задачи
- •Условие задачи
- •Методика решения задачи
- •Условие задачи
- •Методика решения задачи
- •Рекомендуемая литература
- •Условие задачи
- •Методика решения задачи
- •Рекомендуемая литература
- •Описание таблиц и диаграмм водяных паров
- •1. Таблицы сухого насыщенного пара
- •2. Таблицы перегретого пара
- •Условие задачи
- •Методика решения задачи
- •Условие задачи
- •Методика решения задачи
- •Рекомендуемая литература
- •Условие задачи
- •Методика решения задачи
- •Рекомендуемая литература
- •Рекомендуемая литература
- •Рекомендуемая литература
- •Тесты для самоконтроля знаний после изучения курса лекций по дисциплине «Введение в специальность»
- •Раздел I
- •Раздел II
- •Раздел III
- •Раздел IV
- •Раздел V
- •Раздел VI
- •Раздел VII
- •Раздел VIII
- •Ответы к тестам
- •Литература
- •Низамова Альфия Шарифовна Вилданов Рустем Ринатович
5.5. Энтальпия и энтропия жидкости и пара
5.5.1. Энтальпия жидкости и пара
Напишем уравнение первого закона термодинамики для 1 кг тела в общем виде:
(5.6)
Подведенное к телу количество теплоты затрачивается на изменение внутренней энергии и на совершение работы. А – коэффициент.
Для изобарного процесса можно записать l = p(v2 –v1) (см. рис. 4.7).
Допустим, что 1 кг газа, имеющего удельный объем v1, заключен в цилиндр с поршнем, нагруженным грузом.
Если этот газ подогреть, не изменяя давления, то объем его, очевидно, увеличиться и в какой-нибудь момент станет равным v2. При расширении газ произведет внешнюю работу, которая выразится в поднятии поршня. Как известно, работа равна произведению силы на путь т.е.
Рис. 5.7. К объяснению значения совершаемой работы
l = Q∙S,
где:
l – работа 1 кг газа при поднятии поршня с постоянным грузом;
Q – общее давление на поршень;
S – расстояние, на которое передвинулся поршень при совершении газом работы l.
Если обозначим давление газа, приходящегося на 1 м2 площади поршня, через р, а площадь поршня через F м2, то общее давление Q на поршень будет равно pF. При этом l = p·F·S кгм/кг.
Но F·S – объем цилиндра, имеющего площадь основания F и высоту S. Обозначим этот объем через v (удельный объем газа).
Тогда l = p·F·S = pv.
Как видно из рис. 4.7, v= v2 –v1, а поэтому
l
= p(v2
–v1)
кгм/кг.
Тогда уравнение 4.6 можно записать
q=
(и2
– и1)
+ А p(v2
–v1)
ккал/кг.
Перегруппировывая члены в правой части уравнения, получим
(5.7)
q= (и2 + А pv2) – (и1 + А pv1) ккал/кг.
Правая часть этого уравнения является разностью двух выражений, представляющих собой одну и ту же величину вида и + А pv. Эта величина называется э н т а л ь п и е й (теплосодержанием) и обозначается через i. Итак,
i
(5.8)
Как видим, энтальпия определяется тремя величинами: и, р и v, являющимися параметрами состояния рабочего тела. Следовательно, энтальпия тоже является параметром состояния и должна измеряться так же, как измеряются и и А pv, т.е. в килокалориях или килоджоулях. Все величины, входящие в уравнение (4.8), должны относится к одному состоянию тела. Например, если состояние его определяется точкой 1, то i1 = и1 + А pv1 ккал/кг.
В дальнейшем мы увидим, что энтальпия позволяет значительно упрощать и сокращать расчеты, связанные с теплотой, вследствие чего этот параметр широко применяется в теплотехнических расчетах, в особенности в расчетах, относящихся к парам.
Если в уравнении (4.7) для изобарного процесса подставить величину i, то оно приобретает очень простой вид:
(5.9)
q = i2 – i1 ккал/кг.
Значения i берутся из специальных таблиц или диаграмм, о которых будет сказано ниже.
Посмотрим, как вычисляют энтальпию для воды и пара (см. рис. 5.8).
Рис. 5.8. К объяснению определения энтальпии воды и пара
При нагревании
воды от 0о
С до температуры насыщения ts
вода приобретает энтальпию
,
называемой энтальпией кипящей жидкости.
После чего начинается парообразование
и получается влажный насыщенный пар,
энтальпию которого можно определить
по формуле
ккал/кг.
При этом температура насыщения в сосуде остается постоянной, соответствующей давлению в сосуде. Парообразование происходит за счет величины r, называемой скрытой теплотой парообразования (см. ранее). Когда вся вода испарится, получается сухой насыщенный пар, степень сухости которого х равна 1. Энтальпия сухого насыщенного пара определится как:
ккал/кг.
Нагревая далее сухой насыщенный пар и, повышая его температуру, получаем перегретый пар, энтальпию которого можно определить по формуле
ккал/кг,
где t – температура перегретого пара.