
- •2. Затухающие гармонич. Колебания
- •3.Вынужденные колебания
- •11. Уравнение неразрывности струи
- •14. Формула (закон) Пуазейля
- •13. Число Рейнольдса:
- •15.Последовательное и параллельное соединение сосудов.
- •19. Определение скорости кровотока.
- •20. Силовые характер. Электр. Поля
- •3.Потенциал поля точечного заряда:
- •4.Эквипотенциальная поверхность.
- •27. Терапевтические методы
- •33. Контактные методыопредел.Темп.
- •32. Тепловое излучение человека
- •36. Тормозное и характер. Рентг. Излуч.
- •37. Взаимодействие рентг. Излуч.
- •42.Действие радиоактивных излучений
- •2. Проникающая способность:
- •100% Энергии не может быть преобразовано в работу
- •1.Барьерная функция - мембрана при помощи соответств. Механизмов участвует в создании концентрационных градиентов, препятствуя свободной диффузии.
- •3.Преобразование внешних стимулов неэлектрической природы в электрические сигналы (в рецепторах).
- •4.Высвобождение нейромедиаторов в синаптических окончаниях.
- •56. Ур-ние Нернста-Планка с учётом двух градиентов, которые обуславливают диффузию ионов:
- •1. Первично-активный транспорт:
1.Барьерная функция - мембрана при помощи соответств. Механизмов участвует в создании концентрационных градиентов, препятствуя свободной диффузии.
а)Создания потенциала покоя,
б)Генерация потенциала действия,
в)Механизмы распространения биоэлектрических импульсов.
2.Регуляторная функция - тонкая регуляция внутриклет. содержимого и внутриклеточных реакций за счет рецепции внеклеточных биологически активных веществ, что приводит к изменению активности ферментных систем мембраны и запуску механизмов вторичных «месенджеров».
3.Преобразование внешних стимулов неэлектрической природы в электрические сигналы (в рецепторах).
4.Высвобождение нейромедиаторов в синаптических окончаниях.
54.Свободная энергия Гиббса соответствует состоянию системы, при котором давление и температура являются постоянными. Поэтому этот термодинамический потенциал употребляют для описания биологических систем. Полезная работа в таких системах выполняется за счет уменьшения потенциала Гиббса. Величина свободной энергии Гиббса, приходящейся на один ион вещества, называется электрохимическим потенциалом, который включает химическую, осмотическую и электрическую составляющие энергии: μ~ = μ0 + RT ln C + zFφ, где μ0 - стандартный электрохимический потенциал, зависящий от химической природы вещества; C - концентрация вещества, R - универсальная газовая постоянная, T - термодинамическая температура, z - электрический заряд частицы, F - константа Фарадея, φ - электрический потенциал. Электрохимический потенциал натрия, калия и некоторых других веществ играет решающую роль в таком важном процессе как перенос веществ в мембранах клеток.
Электрохимический потенциал является энергией ионов:
где μ0- стандартный химический потенциал, который зависит от химической природы вещества и температуры, R - универсальная газовая постоянная, T - температура, C - концентрация иона, z - электрический заряд, F - константа Фарадея, φ - электрический потенциал.
55.Уравнение Теорелла - зависимость потока ионов J от электрохимического градиента определяется: где U - подвижность ионов, C - концентрация ионов, dμ/dx - электрохимический градиент. |
56. Ур-ние Нернста-Планка с учётом двух градиентов, которые обуславливают диффузию ионов:
|
57.Пассивный транспорт перенос веществ по градиенту концентрациииз области высокой концентрации вобласть низкой, без затрат энергии (например,диффузия,осмос). Диффузия — пассивное перемещениевещества из участка большей концентрации к участку меньшей концентрации.
Осмос пассивное перемещение некоторых веществ через полупроницаемую мембрану (обычно мелкие молекулы проходят,крупные не проходят).
Транспорт веществ через мембрану, в котором используются транспортные молекулы, называются облегчённой диффузией
Простая диффузия — наиболее простой механизм поступления веществ в клетку: перемещение веществ происходит вследствие разницы их концентрации по обе стороны цитоплазмати-ческой мембраны.
Фильтрация - пассивный транспорт, осуществляемый за счёт разности давлений. Таким образом, происходит движение воды и растворённых в ней веществ.
Фильтрация осуществляется через мембранные белковые каналы – поры, зависит от разности давлений снаружи и внутри клетки и проницаемости мембраны для жидкости и низкомолекулярных веществ. Диаметр пор чрезвычайно мал, поэтому фильтруются только низкомолекулярные вещества, вода и некоторые ионы.
Первый закон Фика указывает, что поток вещества, перемещаемого путём диффузии, пропорционален движущей силе диффузии - градиенту концентрации вещества: J = - D · dC/dx (2).
D = U·R·T , где D – коэф. диффузии, U - подвижность частиц вещества, R - универсальная газовая постоянная, T – темп.. J = -P · (C1 - C2), где C1 и C2 - концентрация раствора внутри и вне клетки, P - коэффициент проницаемости мембраны для данного вещества.
Активный транспорт. Это универсальный для всех видов мембран перенос веществ против концентрационных или электрохимических градиентов (из области низкой концентрации в область высокой). При помощи активного транспорта переносятся гидрофильные полимерные молекулы, неорганические ионы (Na, Ca, K) , водород, сахара, аминокислоты, витамины, гормоны и лекарственные вещества. Активный транспорт осуществляется с обязательной затратой энергии, образующейся при расщеплении (окислительное фосфорилирование) аденозинтрифосфорной кислоты (АТФ).
Разновидностью активного транспорта, связанной с деятельностью самой клетки, является микровезикулярный транспорт (пиноцитоз, экзоцитоз и фагоцитоз). При пиноцитозе происходит активное поглощение клеткой жидкости из окружающей среды с формированием пузырьков и последующим переносом их через цитоплазму. Процесс слияния пузырьков с мембраной клетки и выделение клеткой вещества в виде секреторных гранул или вакуолей называется экзоцитозом. Явление фагоцитоза заключается в способности клеток активно захватывать и поглощать микроорганизмы, разрушенные клетки и инородные частицы.
Активный транспорт - перенос ионов против их электрохим. градиентов с использ. энергии метабол.