
- •Ос как система управления ресурсами
- •Второй период (1955 - 1965)
- •Третий период (1965 - 1980)
- •Четвертый период (1980 - настоящее время)
- •Особенности аппаратных платформ
- •Особенности областей использования
- •Особенности методов построения
- •Структура сетевой операционной системы
- •Одноранговые сетевые ос и ос с выделенными серверами
- •Ос для рабочих групп и ос для сетей масштаба предприятия
- •Состояние процессов
- •Контекст и дескриптор процесса
- •Алгоритмы планирования процессов
- •Вытесняющие и невытесняющие алгоритмы планирования
- •Критическая секция
- •V(s) : переменная s увеличивается на 1 одним неделимым действием; выборка, инкремент и запоминание не могут быть прерваны, и к s нет доступа другим процессам во время выполнения этой операции.
- •Управление памятью
- •Типы адресов
- •Распределение памяти разделами переменной величины
- •Перемещаемые разделы
- •Страничное распределение
- •Сегментное распределение
- •Странично-сегментное распределение
- •Свопинг
- •Иерархия запоминающих устройств. Принцип кэширования данных
- •Организация программного обеспечения ввода-вывода
- •Обработка прерываний
- •Драйверы устройств
- •Независимый от устройств слой операционной системы
- •Пользовательский слой программного обеспечения
- •Файловая система
- •Имена файлов
- •Типы файлов
- •Логическая организация файла
- •Физическая организация и адрес файла
- •Права доступа к файлу
- •Кэширование диска
- •Общая модель файловой системы
- •Отображаемые в память файлы
- •Современные архитектуры файловых систем
- •Порождение процессов
- •If( fork() ) { действия отца }
- •Планирование процессов
- •Файловые системы unix System V Release 4
- •Veritas - отказоустойчивая файловая система с транзакционным механизмом операций;
- •Структура файловой системы
- •Имена файлов
- •Привилегии доступа
- •Физическая организация файла
- •Структуры индексных дескрипторов и каталогов
- •Виртуальная файловая система vfs
- •Символьные связи
- •Именованные конвейеры
- •Р ис. 5.9. Связь процесса с его файлами
- •Сетевая файловая система nfs
- •Р ис. 5.10. Многоуровневая структура nfs
- •Управление памятью. Свопинг
- •Vp и offset: указатель на vnode файла и смещение в этом файле, которые задают адрес, начиная с которого расположены на диске данные этого сегмента;
- •Структура физической памяти
- •Р ис. 5.14. Упрощенная схема выполнения запросов подсистемой буферизации
- •Новый буферный кэш
- •Р ис. 5.15. Организация связи ядра с драйверами
- •Драйверы
- •. 5.16. Взаимодействие секции записи драйвера с модулем обработки прерывания
Сегментное распределение
При страничной организации виртуальное адресное пространство процесса делится механически на равные части. Это не позволяет дифференцировать способы доступа к разным частям программы (сегментам), а это свойство часто бывает очень полезным. Например, можно запретить обращаться с операциями записи и чтения в кодовый сегмент программы, а для сегмента данных разрешить только чтение. Кроме того, разбиение программы на "осмысленные" части делает принципиально возможным разделение одного сегмента несколькими процессами. Например, если два процесса используют одну и ту же математическую подпрограмму, то в оперативную память может быть загружена только одна копия этой подпрограммы.
Рассмотрим, каким образом сегментное распределение памяти реализует эти возможности (рисунок 2.14). Виртуальное адресное пространство процесса делится на сегменты, размер которых определяется программистом с учетом смыслового значения содержащейся в них информации. Отдельный сегмент может представлять собой подпрограмму, массив данных и т.п. Иногда сегментация программы выполняется по умолчанию компилятором.
При загрузке процесса часть сегментов помещается в оперативную память (при этом для каждого из этих сегментов операционная система подыскивает подходящий участок свободной памяти), а часть сегментов размещается в дисковой памяти. Сегменты одной программы могут занимать в оперативной памяти несмежные участки. Во время загрузки система создает таблицу сегментов процесса (аналогичную таблице страниц), в которой для каждого сегмента указывается начальный физический адрес сегмента в оперативной памяти, размер сегмента, правила доступа, признак модификации, признак обращения к данному сегменту за последний интервал времени и некоторая другая информация. Если виртуальные адресные пространства нескольких процессов включают один и тот же сегмент, то в таблицах сегментов этих процессов делаются ссылки на один и тот же участок оперативной памяти, в который данный сегмент загружается в единственном экземпляре.
Рис. 2.14. Распределение памяти сегментами
Система с сегментной организацией функционирует аналогично системе со страничной организацией: время от времени происходят прерывания, связанные с отсутствием нужных сегментов в памяти, при необходимости освобождения памяти некоторые сегменты выгружаются, при каждом обращении к оперативной памяти выполняется преобразование виртуального адреса в физический. Кроме того, при обращении к памяти проверяется, разрешен ли доступ требуемого типа к данному сегменту.
Виртуальный адрес при сегментной организации памяти может быть представлен парой (g, s), где g - номер сегмента, а s - смещение в сегменте. Физический адрес получается путем сложения начального физического адреса сегмента, найденного в таблице сегментов по номеру g, и смещения s.
Недостатком данного метода распределения памяти является фрагментация на уровне сегментов и более медленное по сравнению со страничной организацией преобразование адреса.