
Добавил:
Upload
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз:
Предмет:
Файл:Лекции по УМФ от Климанова / УМФ_А5_4.ppt
X
- •Метод разделения переменных для струны,
- •Метод разделения переменных для струны,
- •Метод разделения переменных для струны,
- •Метод разделения переменных для струны,
- •Метод разделения переменных для струны,
- •Метод разделения переменных для струны,
- •Метод разделения переменных для струны,
- •Метод разделения переменных для струны,
- •Метод разделения переменных для струны,
- •Метод разделения переменных для струны,
- •Метод разделения переменных для струны,
- •Метод разделения переменных для струны,
- •Метод разделения переменных для струны,
- •Метод разделения переменных для струны,
- •Метод разделения переменных для струны,
- •Метод разделения переменных для струны,
- •Метод разделения переменных для струны,
- •Неоднородное уравнение струны (вынужденные колебания струны)
- •Неоднородное уравнение струны (вынужденные колебания струны)
- •Неоднородное уравнение струны (вынужденные колебания струны)
- •Неоднородное уравнение струны (вынужденные колебания струны)
- •Неоднородное уравнение струны (вынужденные колебания струны)
- •Неоднородное уравнение струны (вынужденные колебания струны)
- •Неоднородное уравнение струны (вынужденные колебания струны)
- •Неоднородное уравнение струны (вынужденные колебания струны)
- •Метод разделения переменных для конечного стержня
- •Метод разделения переменных для конечного стержня
- •Метод разделения переменных для конечного стержня
- •Метод разделения переменных для конечного стержня
- •Метод разделения переменных для конечного стержня
- •Метод разделения переменных для конечного стержня
- •Метод разделения переменных для конечного стержня
- •Метод разделения переменных для конечного стержня
- •Метод разделения переменных для конечного стержня
- •Метод разделения переменных для конечного стержня
- •Неоднородное уравнение теплопроводности
- •Неоднородное уравнение теплопроводности
- •Неоднородное уравнение теплопроводности
- •Неоднородное уравнение теплопроводности
- •Неоднородное уравнение теплопроводности
- •Уравнение теплопроводности для бесконечного стержня
- •Уравнение теплопроводности для бесконечного стержня
- •Уравнение теплопроводности для бесконечного стержня
- •Уравнение теплопроводности для бесконечного стержня
- •Уравнение теплопроводности для бесконечного стержня
- •Уравнение теплопроводности для бесконечного стержня
- •Уравнение теплопроводности для стержня, излучающего с боковой поверхности
- •Уравнение теплопроводности для стержня, излучающего с боковой поверхности
- •Уравнение теплопроводности для стержня, излучающего с боковой поверхности
- •Уравнение теплопроводности для стержня, излучающего с боковой поверхности
- •Уравнение теплопроводности для стержня, излучающего с боковой поверхности
- •Уравнение теплопроводности для стержня, излучающего с боковой поверхности
- •Уравнение теплопроводности для стержня, излучающего с боковой поверхности
- •Уравнение теплопроводности для стержня, излучающего с боковой поверхности
- •неоднородными краевыми
- •неоднородными краевыми
- •неоднородными краевыми
- •неоднородными краевыми условиями
- •Уравнение Лапласа
- •Задача Дирихле для уравнения Лапласа в круге
- •Задача Дирихле для уравнения Лапласа в круге
- •Задача Дирихле для уравнения Лапласа в круге
- •Задача Дирихле для уравнения Лапласа в круге
- •Задача Дирихле для уравнения Лапласа в круге
- •Задача Дирихле для уравнения Лапласа в круге
- •Задача Дирихле для уравнения Лапласа в круге
- •Задача Дирихле для уравнения Лапласа в круге
- •Задача Дирихле для уравнения Лапласа в круге
- •Задача Дирихле для уравнения Лапласа в круге
- •Задача Дирихле для уравнения Лапласа в круге
- •Задача Дирихле для уравнения Лапласа в круге
- •Задача Дирихле для уравнения Лапласа в круге
- •Задача Дирихле для уравнения Лапласа в круге
- •Задача Дирихле для уравнения Лапласа в круге
- •Задача Дирихле для уравнения Лапласа в круге
- •Задача Дирихле для уравнения Лапласа в круге
- •Задача Дирихле для уравнения Лапласа в кольце
- •Задача Дирихле для уравнения Лапласа в кольце
- •Задача Дирихле для уравнения Лапласа в кольце
- •Задача Дирихле для уравнения Лапласа в кольце
- •Задача Дирихле для уравнения Лапласа в кольце
- •Задача Дирихле для уравнения Лапласа в кольце
- •Задача Дирихле для уравнения Лапласа в кольце
- •Задача Дирихле для уравнения Лапласа в кольце
- •Уравнение Лапласа в прямоугольнике
- •Уравнение Лапласа в прямоугольнике
- •Уравнение Лапласа в прямоугольнике
- •Уравнение Лапласа в прямоугольнике
- •Уравнение Лапласа в прямоугольнике
- •Уравнение Лапласа
- •Уравнение Лапласа в прямоугольнике
- •Уравнение Лапласа в прямоугольнике
- •Уравнение Лапласа в прямоугольнике
- •Уравнение Лапласа в прямоугольнике
- •Уравнение Лапласа в прямоугольнике
- •Уравнение Лапласа в прямоугольнике
- •Уравнение Лапласа в прямоугольнике
- •Уравнение Лапласа в прямоугольнике
- •Уравнение Лапласа в прямоугольнике
- •Уравнение Лапласа в прямоугольнике
- •Теорема единственности
- •Теорема единственности для уравнения колебаний струны
- •Теорема единственности для уравнения колебаний струны
- •Теорема единственности для уравнения колебаний струны
- •Теорема единственности для уравнения колебаний струны
- •Теорема единственности для уравнения колебаний струны
- •Теорема единственности для уравнения колебаний струны
- •Теорема единственности для уравнения колебаний струны
- •Теорема единственности для уравнения теплопроводности
- •Теорема единственности для уравнения теплопроводности
- •Принцип максимума (минимума)
- •Принцип максимума (минимума)
- •Принцип максимума (минимума)
- •Принцип максимума (минимума)
- •Принцип максимума (минимума)
- •Принцип максимума (минимума)
- •Принцип максимума (минимума)
- •Принцип максимума (минимума)
- •Принцип максимума (минимума)
- •Принцип максимума (минимума) следствия
- •Принцип максимума (минимума) следствия
- •Принцип максимума (минимума) следствия

Принцип максимума (минимума) следствия
Тогда
для всех значений
Доказательство
Максимум и минимум находится на границе, следовательно,

Принцип максимума (минимума) следствия
2)Если взять третье условие
- решение уравнения теплопроводности монотонно зависит от начальных данных
Соседние файлы в папке Лекции по УМФ от Климанова