Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика / Глава 12. Электростатика.doc
Скачиваний:
531
Добавлен:
25.03.2016
Размер:
979.46 Кб
Скачать

§ 12.2 Теорема Гаусса. Применение теоремы Гаусса к расчёту электростатических полей.

Когда зарядов много, при расчётах полей возникают некоторые трудности.

Преодолеть их помогает теорема Гаусса. Суть теоремы Гаусса сводится к следующему: если произвольное количество зарядов мысленно окружить замкнутой поверхностью S, то поток напряжённости электрического поля через элементарную площадку dS можно записать как dФ = Есоsα۰dS где α - угол между нормалью к плоскости и вектором напряжённости . (рис.12.7)

Полный же поток через всю поверхность будет равен сумме потоков от всех зарядов, произвольным образом распределённых внутри её и пропорционально величине этого заряда

(12.9)

Определим поток вектора напряжённости сквозь сферическую поверхность радиуса r, в центре которой расположен точечный заряд +q (рис.12.8). Линии напряжённости перпендикулярны поверхности сферы, α =0, следовательно соsα = 1. Тогда

или

Если поле образовано системой зарядов, то

Теорема Гаусса: поток вектора напряжённости электростатического поля в вакууме сквозь любую замкнутую поверхность равен алгебраической сумме зарядов, заключенных внутри этой поверхности, делённой на электрическую постоянную.

(12.10)

Если внутри сферы зарядов нет, то Ф = 0.

Теорема Гаусса позволяет сравнительно просто рассчитать электрические поля при симметрично распределённых зарядов.

Введём понятие о плотности распределенных зарядов.

  • Линейная плотность обозначается τ и характеризует заряд q, приходящийся на единицу длины ℓ. В общем виде может быть рассчитана по формуле

(12.11)

При равномерном распределении зарядов линейная плотность равна

  • Поверхностная плотность обозначается σ и характеризует заряд q, приходящийся на единицу площади S. В общем виде определяется по формуле

(12.12)

При равномерном распределении зарядов по поверхности поверхностная плотность равна

  • Объёмная плотность обозначается ρ, характеризует заряд q, приходящийся на единицу объёма V. В общем виде определяется по формуле

(12.13)

При равномерном распределении зарядов она равна .

    • Напряжённость электростатического поля равномерно заряженной сферы (рис.12.9), имеющей радиус r0. Найдём модуль вектора в какой-либо точке А, находящейся на расстоянии r1 от центра этой сферы.

Так как заряд q располагается на сфере равномерно, то

σ = const. Применим теорему Гаусса. Проведём сферу радиусом через точку А. Поток вектора напряжённости рис.12.9 сквозь сферическую поверхность радиуса равен соsα = 1, так как α = 0. По теореме Гаусса, .

или

(12.14)

Из выражения (12.14) следует, что напряжённость поля вне заряженной сферы такая же, как напряжённость поля точечного заряда, помещённого в центре сферы. На поверхности сферы, т.е. r1 = r0 , напряжённость .

Внутри сферы r1 < r0 (рис.12.9) напряжённость Е = 0, так как сфера радиусом r2 внутри никаких зарядов не содержит и, по теореме Гаусса, поток вектора сквозь такую сферу равен нулю.

    • Напряжённость поля, создаваемого равномерно заряженным бесконечно длинным цилиндром

Цилиндр радиусом r0 равномерно заряжен с поверхностной плотностью σ (рис.12.10). Определим напряжённость поля в произвольно выбранной точке А. Проведём через точку А воображаемую цилиндрическую поверхность радиусом R и длиной ℓ. Вследствие симметрии поток будет выходить только через боковые поверхности цилиндра, так как заряды на цилиндре радиуса r0 распределены по его поверхности равномерно, т.е. линии напряжённости будут радиальными прямыми, перпендикулярными боковым поверхностям обоих цилиндров. Так как поток через основание цилиндров равен нулю (cos α = 0), а боковая поверхность цилиндра перпендикулярна силовым линиям (cos α = 1), то

или

(12.15)

Выразим величину Е через σ - поверхностную плотность. По определению,

следовательно,

Подставим значение q в формулу (12.15)

(12.16)

По определению линейной плотности, , откуда ; подставляем это выражение в формулу (12.16):

(12.17)

т.е. напряжённость поля, создаваемого бесконечно длинным заряженным цилиндром, пропорциональна линейной плотности заряда и обратно пропорциональна расстоянию.

    • Напряжённость поля, создаваемого бесконечной равномерно заряженной плоскостью

Определим напряжённость поля, создаваемого бесконечной равномерно заряженной плоскостью в точке А. Пусть поверхностная плотность заряда плоскости равна σ. В качестве замкнутой поверхности удобно выбрать цилиндр, ось которого перпендикулярна плоскости, а правое основание содержит точку А. Плоскость делит цилиндр пополам. Очевидно, что силовые линии перпендикулярны плоскости и параллельны боковой поверхности цилиндра, поэтому весь поток проходит только через основания цилиндра. На обоих основаниях напряжённость поля одинакова, т.к. точки А и В симметричны относительно плоскости. Тогда поток, через основания цилиндра равен

Согласно теореме Гаусса,

Так как , то , откуда

(12.18)

Таким образом, напряжённость поля бесконечной заряженной плоскости пропорциональна поверхностной плотности заряда и не зависит от расстояния до плоскости. Следовательно, поле плоскости является однородным.

    • Напряжённость поля, создаваемого двумя разноименно равномерно заряженными параллельными плоскостями

Результирующее поле, создаваемое двумя плоскостями, определяется по принципу суперпозиции полей: (рис.12.12). Поле, создаваемое каждой плоскостью, является однородным, напряжённости этих полей равны по модулю, но противоположны по направлению: . По принципу суперпозиции напряжённость суммарного поля вне плоскости равна нулю:

Между плоскостями напряжённости полей имеют одинаковые направления, поэтому результирующая напряжённость равна

(12.19)

Таким образом, поле между двумя разноименно равномерно заряженными плоскостями однородно и его напряжённость в два раза больше, чем напряжённость поля, создаваемого одной плоскостью. Слева и справа от плоскостей поле отсутствует. Такой же вид имеет и поле конечных плоскостей, искажение появляется только вблизи их границ. С помощью полученной формулы можно рассчитать поле между обкладками плоского конденсатора.