Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы математики и ее приложения в экономическом образовании_Красс М.С., Чупрынов Б.П_2001 -688с.doc
Скачиваний:
1481
Добавлен:
23.03.2016
Размер:
12.97 Mб
Скачать

Способы отбора

Различают два способа отбора: без расчленения генераль­ной совокупности на части и с расчленением. К первому отно­сятся простые случайные отборы (либо повторный, либо бес­повторный), когда объекты извлекают по одному из всей гене­ральной совокупности; такой отбор можно производить с ис­пользованием таблицы случайных чисел.

Второй способ отбора включает в себя следующие разно­видности, соответствующие способам расчленения генераль­ной совокупности. Отбор, при котором объекты отбираются из каждой "типической" части генеральной совокупности, на­зывается типическим. Например, отбор деталей из продукции каждого станка, а не из их общего количества является типи­ческим. Если генеральную совокупность делят на число групп, равное объему выборки, с последующим отбором из каждой группы по одному объекту, то такой отбор называется меха­ническим. Серийным называется отбор, при котором объекты отбираются не по одному, а сериями; этот способ используется, когда исследуемый признак имеет незначительные колебания в различных сериях.

На практике часто употребляется комбинирование указан­ных выше способов отбора. Например, генеральную совокуп­ность разбивают на серии одинакового объема, затем случай­ным образом отбирают несколько серий и в завершение слу­чайным извлечением отдельных объектов составляют выбор­ку. Конкретная комбинация способов отбора объектов из гене­ральной совокупности определяется требованием репрезента­тивности выборки.

Статистическое распределение выборки

Пусть из генеральной совокупности извлечена выборка объ­ема п, в которой значение x1 некоторого исследуемого призна­ка Х наблюдалось п1 раз, значение x2 п2 раз, ..., значение xknk раз. Значения xi называются вариантами, а их после­довательность, записанная в возрастающем порядке,— вариационным рядом. Числа ni называются частотами, а их отно­шения к объему выборки

относительными частотами. При этом ni = п. Модой Мo называется варианта, имеющая наибольшую частоту. Ме­дианой те называется варианта, которая делит вариационный ряд на две части с одинаковым числом вариант в каждой. Если число вариант нечетно, т.е. k = 2l + 1, то me = xl+1; если же число вариант четно (k = 2l), то те = (xl + xl+1)/2. Разма­хом варьирования называется разность между максимальной и минимальной вариантами или длина интервала, которому принадлежат все варианты выборки:

Перечень вариант и соответствующих им частот называ­ется статистическим распределением выборки. Здесь имеет­ся аналогия с законом распределения случайной величины: в теории вероятностей — это соответствие между возможными значениями случайной величины и их вероятностями, а в математической статистике — это соответствие между наблюда­емыми вариантами и их частотами (относительными частота­ми). Нетрудно видеть, что сумма относительных частот равна единице: Wi = 1.

Пример 2. Выборка задана в виде распределения частот:

Найти распределение относительных частот и основные харак­теристики вариационного ряда.

Решение. Найдем объем выборки: п = 2 + 4 + 5 + 6 + 3 = 20. Относительные частоты соответственно равны W1 = 2/20 = 0,1; W2 = 4/20 = 0,2; W3 = 5/20 = 0,25; W4 = 6/20 = 0,3; W5 = 3/20 = 0,15. Контроль: 0,1 + 0,2 + 0,25 + 0,3 + 0,15 = 1. Искомое распределение относительных частот имеет вид

Мода этого вариационного ряда равна 12. Число вариант в дан­ном случае нечетно: k = 2 ∙ 2 + 1, поэтому медиана me = x3 = 8. Размах варьирования, согласно формуле (18.48), R = 17 – 4 = 13.