Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы математики и ее приложения в экономическом образовании_Красс М.С., Чупрынов Б.П_2001 -688с.doc
Скачиваний:
1512
Добавлен:
23.03.2016
Размер:
12.97 Mб
Скачать

16.3. Линейная модель торговли

Одним из примеров экономического процесса, приводящего к понятию собственного числа и собственного вектора матри­цы, является процесс взаимных закупок товаров. Будем пола­гать, что бюджеты п стран, которые мы обозначим соответ­ственно x1, x2, … , xn расходуются на покупку товаров. Мы будем рассматривать линейную модель обмена, или, как ее еще называют, модель международной торговли.

Пусть aij — доля бюджета xj, которую j-я страна тратит на закупку товаров у i-й страны. Введем матрицу коэффици­ентов aij:

Тогда если весь бюджет расходуется только на закупки внутри страны и вне ее (можно это трактовать как торговый бюджет), то справедливо равенство

Матрица (16.12) со свойством (16.13), в силу которого сум­ма элементов ее любого столбца равна единице, называется структурной матрицей торговли. Для i-й страны общая вы­ручка от внутренней и внешней торговли выражается форму­лой

Условие сбалансированной (бездефицитной) торговли фор­мулируется естественным образом: для каждой страны ее бюд­жет должен быть не больше выручки от торговли, т.е. Pixi:, или

Докажем, что в условиях (16.14) не может быть знака не­равенства. Действительно, сложим все эти неравенства при i от 1 до n. Группируя слагаемые с величинами бюджетов xj, получаем

Нетрудно видеть, что в скобках стоят суммы элементов матри­цы А по ее столбцам от первого до последнего, которые равны единице по условию (16.13). Стало быть, мы получили нера­венство

откуда возможен только знак равенства.

Таким образом, условия (16.14) принимают вид равенств:

Введем вектор бюджетов , каждая компонента которого ха­рактеризует бюджет соответствующей страны; тогда систему уравнений (16.15) можно записать в матричной форме

Это уравнение означает, что собственный вектор структурной матрицы А, отвечающий ее собственному значению λ = 1, со­стоит из бюджетов стран бездефицитной международной тор­говли.

Перепишем уравнение (16.16) в виде, позволяющем опреде­лить :

Пример. Структурная матрица торговли четырех стран име­ет вид:

Найти бюджеты этих стран, удовлетворяющие сбалансиро­ванной бездефицитной торговле при условии, что сумма бюд­жетов задана:

Решение. Необходимо найти собственный вектор , отве­чающий собственному значению λ = 1 заданной структурной матрицы А, т.е. решить уравнение (16.17), которое в нашем случае имеет вид

Поскольку ранг этой системы равен трем, то одна из неизвест­ных является свободной переменной и остальные выражаются через нее. Решая систему методом Гаусса, находим компонен­ты собственного вектора :

Подставив найденные значения в заданную сумму бюджетов, найдем величину с: с = 1210, откуда окончательно получаем искомые величины бюджетов стран при бездефицитной торговле (в условных денежных единицах):

Упражнения

16.1. По данным табл. 16.1 составить новую таблицу про­изводственно-экономических показателей по следующим усло­виям:

— количество изделий всех видов увеличивается на 20%,

— норма времени изготовления по всем изделиям уменьша­ется на 20%,

— цена на все виды изделий уменьшается на 10%.

Найти ежесуточные показатели, указанные в задаче 1 п. 16.1, а также их процентные изменения.

16.2. По данным табл. 16.2 составить новую таблицу по сле­дующим условиям:

— дневная производительность всех предприятий увеличи­вается на 100%,

— число рабочих дней в году для 1-го предприятия увели­чивается на 50%, а для остальных — на 40%,

— цены на виды сырья уменьшаются соответственно на 10, 20 и 30%.

Определить суммы кредитования предприятий и их соот­ветствующие процентные изменения.

16.3. Отрасль состоит из 4-х предприятий; вектор выпуска продукции и матрица внутреннего потребления имеют вид

Найти вектор объемов конечного продукта, предназначенного для реализации вне отрасли.

16.4. Предприятие выпускает три вида продукции с использованием трех видов сырья, характеристики производства указаны в следующей таблице:

Найти объем выпуска продукции каждого вида при заданных запасах сырья.

16.5. В условиях примера 2 п. 16.2 определить прирост объе­мов валовых выпусков по каждой отрасли (в процентах), если конечное потребление увеличить по отраслям соответственно на 30, 10 и 50%. Решить задачу методом обратной матрицы и методом Гаусса.

16.6. Структурная матрица торговли трех стран имеет вид

Найти бюджеты первой и второй стран, удовлетворяющие сба­лансированной бездефицитной торговле при условии, что бюд­жет третьей страны равен 1100 усл. ед.