Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы математики и ее приложения в экономическом образовании_Красс М.С., Чупрынов Б.П_2001 -688с.doc
Скачиваний:
1529
Добавлен:
23.03.2016
Размер:
12.97 Mб
Скачать

15.3. Вычисление обратной матрицы методом Гаусса

Метод Гаусса является поистине универсальным в решении систем линейных алгебраических уравнений. Мы продемонст­рируем применение этого метода при вычислении обратных матриц.

Практически этот наиболее простой способ вычисления об­ратной матрицы состоит в следующих шагах.

1. К матрице А, по отношению к которой ищется обратная матрица, приписывается справа единичная матрица Е.

2. Путем преобразований методом Гаусса над строками рас­ширенной матрицы |Е) матрица А приводится к виду еди­ничной матрицы.

3. После окончания указанного вычислительного процесса, т.е. когда на месте исходной матрицы А будет сформирована единичная матрица, на месте приписанной справа единичной матрицы Е будет находиться обратная матрица А-1. Иными словами, вместо расширенной матрицы (А|Е) в итоге получaется расширенная матрица (E|A-1).

Продемонстрируем эту последовательность действий на не­сложном примере.

Пример 1. Найти обратную матрицу исходной матрицы

Решение. Выполняем последовательно шаги 1 — 3:

Схема вычислений по методу Гаусса пояснена здесь теми же обозначениями, что и в п. 15.2, при этом стрелками показано, к какой строке прибавляется измененная строка. Последний этап вычислений, показанный стрелкой (3), состоит в делении по­следней строки расширенной матрицы на -2. Итак, обратная матрица имеет вид

Нетрудно непосредственно проверить правильность прове­денных вычислений по определению обратной матрицы: АА-1 = А-1А.

15.4. Геометрическая интерпретация системы линейных уравнений

Как известно, уравнения с двумя переменными вида

описывают на координатной плоскости Оху прямую. Система двух уравнений такого вида означает, что ее решения как точ­ки на координатной плоскости должны принадлежать одновре­менно двум прямым, соответствующим уравнениям этой сис­темы. Отсюда возможны следующие варианты: а) обе прямые пересекаются, и тогда система имеет единственное решение; б) прямые параллельны, и система не имеет решения (несов­местна); в) прямые совпадают, т.е. ранг системы равен едини­це, и система имеет бесчисленное множество решений.

Уравнение с тремя переменными вида

описывает плоскость в трехмерном пространстве. Решение сис­темы трех уравнений с тремя неизвестными — это точки про­странства, принадлежащие одновременно трем плоскостям, ко­торые описываются уравнениями системы. В этом случае воз­можны следующие варианты: а) три плоскости пересекаются в одной точке, и система имеет единственное решение; б) три плоскости пересекаются по одной прямой — система имеет бесчисленное множество решений (все точки на этой прямой); в) две плоскости совпадают, а третья пересекает их — бес­численное множество решений (все точки прямой — на пересе­чении трех плоскостей), ранг системы равен двум; г) все три плоскости совпадают — все точки общей плоскости являются решениями, и ранг системы равен единице; д) хотя бы одна из плоскостей параллельна какой-либо из двух других — систе­ма несовместна; е) плоскости пересекаются попарно по парал­лельным прямым — система несовместна. В последних двух случаях несовместность системы уравнений обусловлена тем, что нет таких точек трехмерного пространства, которые принадлежали бы одновременно всем трем плоскостям.

В случае системы уравнений с n неизвестными каждое ура­внение вида

можно интерпретировать как гиперплоскость в координатном пространстве An. Решение системы (15.1) — это множество точек пространства An, которые принадлежат одновременно всем m гиперплоскостям, соответствующим уравнениям этой системы.