Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы математики и ее приложения в экономическом образовании_Красс М.С., Чупрынов Б.П_2001 -688с.doc
Скачиваний:
1529
Добавлен:
23.03.2016
Размер:
12.97 Mб
Скачать

1.5. Абсолютная величина числа

Приведем определение абсолютной величины вещественно­го числа х (модуля числа):

х, если х ≥ 0;

|x| =

-х, если х < 0.

Из этого определения следует ряд свойств абсолютной величи­ны, который мы приводим ниже без доказательств.

1. |х| ≥ 0.

2. |х| = | - x|.

3. -|х|х ≤ |x| .

4. Пусть а — положительное число. Тогда неравенства |х|а и ха равносильны.

5. Для любых двух действительных чисел х и у справед­ливо неравенство

|x + y| ≤ |x| + |y|.

В это свойство можно включить также и неравенство

|х – у| |х| + |у|.

6. Для любых двух действительных чисел х и y справед­ливо неравенство

|х – y| ≥ |х| -|у|.

Упражнения

Определить множества значений x, удовлетворяющих следую­щим условиям.

    1. |х| < 2. 1.2. x2 ≤ 9. 1.3. х2 > 25. 1.4. |x – 3| < 1. 1.5. (x2 + l) ≤ 17. 1.6 (x2 - 3) 1. 1.7. х - х2 > 0.

1.8. x2 – 2x + 7 > 0. 1.9. x2 – 2x + 5 < 0.

Глава 2. Предел последовательности

2.1. Числовые последовательности Числовые последовательности и операции над ними

Числовые последовательности представляют собой беско­нечные множества чисел. Примерами последовательностей мо­гут служить: последовательность всех членов бесконечной гео­метрической прогрессии, последовательность приближенных значений (x1 = 1, х2 = 1,4, х3 = 1,41, ...), последовательность периметров правильных n-угольников, вписанных в данную окружность. Уточним понятие числовой последова­тельности.

Определение 1. Если каждому числу n из натурального ряда чисел 1, 2, 3,..., п,... поставлено в соответствие вещественное число xп, то множество вещественных чисел

x1, x2, x3, …, xn, … (2.1)

называется числовой последовательностью, или просто после­довательностью. .

Числа х1, x2, x3, ..., xп, ... будем называть элемента­ми, или членами последовательности (2.1), символ xпоб­щим элементом, или членом последовательности, а число п — его номером. Сокращенно последовательность (2.1) будем обо­значать символом п}. Например, символ {1/n} обозначает последовательность чисел

.

Иными словами, под последовательностью можно понимать бесконечное множество занумерованных элементов или мно­жество пар чисел (п, xп), в которых первое число принимает последовательные значения 1, 2, 3, ... . Последовательность считается заданной, если указан способ получения любого ее элемента. Например, формула xп = -1 + (-1)n определяет последовательность 0, 2, 0, 2,... .

Геометрически последовательность изображается на число­вой оси в виде последовательности точек, координаты кото­рых равны соответствующим членам последовательности. На рис. 2.1 изображена последовательность {хп} = {1/n} на чи­словой прямой.

Понятие сходящейся последовательности

Определение 2. Число а называется пределом последова­тельности {xn}, если для любого положительного числа ε су­ществует такой номер N, что при всех п > N выполняется неравенство

(2.2)

Последовательность, имеющая предел, называется сходя­щейся. Если последовательность имеет своим пределом число а, то это записывается так:

Последовательность, не имеющая предела, называется рас­ходящейся.

Определение 3. Последовательность, имеющая своим преде­лом число а = 0, называется бесконечно малой последователь­ностью.

Замечание 1. Пусть последовательность {хп} имеет своим пределом число а. Тогда последовательность {αn}= {xn a} есть бесконечно малая, т.е. любой элемент xп сходящейся последовательности, имеющей предел а, можно представить в виде

где αnэлемент бесконечно малой последовательности {αn}.

Замечание 2. Неравенство (2.2) эквивалентно неравен­ствам (см. свойство 4 модуля числа из п. 1.5)

Это означает, что при п > N все элементы последователь­ности {xn} находятся в ε-окрестности точки а (рис. 2.2), причем номер N определяется по величине ε.

Интересно дать геометрическую интерпретацию этого определения. Поскольку последовательность представляет со­бой бесконечное множество чисел, то если она сходится, в лю­бой ε-окрестности точки а на числовой прямой находится бес­конечное число точек — элементов этой последовательности, тогда как вне ε-окрестности остается конечное число элемен­тов. Поэтому предел последовательности часто называют точ­кой сгущения.

Замечание 3. Неограниченная последовательность не имеет конечного предела. Однако она может иметь бесконеч­ный предел, что записывается в следующем виде:

(2.3)

Если при этом начиная с некоторого номера все члены по­следовательности положительны (отрицательны), то пишут

Если {xn} — бесконечно малая последовательность, то {1/xп} — бесконечно большая последовательность, имеющая бесконечный предел в смысле (2.3), и наоборот.

Приведем примеры сходящихся и расходящихся последова­тельностей.

Пример 1. Показать, используя определение предела последовательности, что .

Решение. Возьмем любое число ε > 0. Так как

то чтобы выполнялось неравенство (2.2), достаточно решить неравенство 1 / (n + 1) < ε, откуда получаем n > (1 — ε) / ε. Доста­точно принять N = [(1 — ε)/ε] (целая часть числа (1 — ε)/ ε)* , чтобы неравенство |xп — 1| < ε выполнялось при всех п > N.

* Символ [a] означает целую часть числаа, т.е. наибольшее целое число, не превосходящее а. Например, [2] = 2, [2,5] = 2, [0,8] = 0, [-0, 5] = -1, [-23,7] = -24.

Пример 2. Показать, что последовательность {хп} = (-1)n, или -1, 1, -1, 1,... не имеет предела.

Решение. Действительно, какое бы число мы ни предпо­ложили в качестве предела: 1 или —1, при ε < 0,5 неравенство (2.2), определяющее предел последовательности, не удовлетво­ряется — вне ε -окрестности этих чисел остается бесконечное число элементов xп: все элементы с нечетными номерами рав­ны —1, элементы с четными номерами равны 1.