Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы математики и ее приложения в экономическом образовании_Красс М.С., Чупрынов Б.П_2001 -688с.doc
Скачиваний:
1481
Добавлен:
23.03.2016
Размер:
12.97 Mб
Скачать

Упражнения

14.1. Вычислить определители:

14.2. Дана матрица

Найти миноры элементов a23, a14, a34 и алгебраические допол­нения элементов a32, a43, a24.

14.3. Найти ранги следующих матриц:

14.4. Определить, являются ли зависимыми векторы 1, 2, 3: a) 1 = (2, -1, 3), 2 = (1, 4, -1), 3 = (0, -9, 5); б) 1 = (1, 2, 0), 2 = (3, -1, 1), 3 = (0, 1, 1).

14.5. Показать, что векторы 1 = (1, -1, 3), 2 = (3, -1, 1) и 3 = (0, 1, 1) образуют базис.

Глава 15. Системы линейных алгебраических уравнений

Этот раздел является одним из основных в алгебре. Нет такой отрасли науки и приложений, где в том или ином виде не использовались бы системы линейных алгебраических урав­нений. При решении экономических задач системы линейных уравнений наиболее употребимы как в аппарате исследования, так и при рассмотрении частных проблем.

15.1. Основные понятия Общий вид и свойства системы уравнений

Система т линейных уравнений с п неизвестными (пере­менными) x1, x2, ..., xп имеет вид

Здесь aij и bi — произвольные числа (i = 1, 2,..., m; j = 1, 2, ..., n), которые называются соответственно коэффици­ентами при неизвестных и свободными членами уравнений (15.1). Первый индекс у коэффициентов при неизвестных озна­чает номер уравнения, второй индекс соответствует номеру не­известного xi.

Решением системы уравнений (15.1) называется набор п чисел x1 = α1, x2 = α2, … , xn = αn, при подстановке которых в эту систему каждое уравнение данной системы превращается в тождество.

Система уравнений (15.1) называется совместной, если она имеет хотя бы одно решение; если система не имеет решений, она называется несовместной. Совместная система уравнений имеет либо одно решение, и в таком случае она называется определенной, либо, если у нее больше одного решения, она называется неопределенной.

Системы уравнений вида (15.1) называются эквивалент­ными, если они имеют одно и то же множество решений. Эле­ментарные преобразования исходной системы приводят к эк­вивалентной системе. К элементарным преобразованиям отно­сятся:

  • вычеркивание уравнения 0x1 + 0x2 + ... + 0хn = 0нулевой строки;

  • перестановка уравнений или слагаемых aijxj в уравне­ниях;

  • прибавление к обеим частям одного уравнения соответ­ственно обеих частей другого уравнения этой системы, умноженного на любое действительное число;

  • удаление уравнений, являющихся линейными комбина­циями других уравнений системы.

Последнее свойство вытекает из третьего свойства: если какое-либо уравнение представляет собой линейную комбина­цию других уравнений, то из него можно сформировать нуле­вую строку.

Матричная форма системы уравнений

Сведем коэффициенты при неизвестных в системе уравне­ний (15.1) в матрицу

Эта матрица состоит из m строк и п столбцов и называет­ся матрицей системы. Введем в рассмотрение две матрицы-столбца: матрицу неизвестных Х и матрицу свободных чле­нов В:

Х и В представляют собой векторы-столбцы, однако в целях единого подхода в рамках матричной алгебры удобнее тракто­вать их именно как матрицы, состоящие соответственно из п и m строк и одного столбца.

Тогда систему линейных уравнений (15.1) можно записать в матричной форме, поскольку размер матрицы А равен т х n, а размер Х — n х 1 и, значит, произведение этих матриц имеет смысл:

Произведение матриц АХ является, как и В, матрицей-столб­цом размером т х 1, состоящей из левых частей уравнений сис­темы (15.1). Все уравнения этой системы вытекают из уравне­ния (15.3) в силу определения равенства двух матриц (п. 13.1).

Введем в рассмотрение еще одну матрицу; дополним мат­рицу системы А столбцом свободных членов и получим новую матрицу размером т х (n + 1):

Матрица АВ называется расширенной матрицей системы. Эта матрица играет важную роль в вопросе о разрешимости системы уравнений.

ТЕОРЕМА 1 (Кронекера-Капелли, критерий совместности системы). Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу рас­ширенной матрицы системы.

Доказательство этой теоремы мы не приводим.