Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы математики и ее приложения в экономическом образовании_Красс М.С., Чупрынов Б.П_2001 -688с.doc
Скачиваний:
1529
Добавлен:
23.03.2016
Размер:
12.97 Mб
Скачать

Миноры и алгебраические дополнения

Рассмотрим определитель n-го порядка (14.3). Выделим в нем какой-либо элемент аij и вычеркнем i-ю строку и j-й стол­бец, на пересечении которых расположен этот элемент. Полу­ченный определитель (n - 1)-го порядка называется минором Mij элемента aij определителя Δn.

Пример 1. Найти минор М32 определителя четвертого по­рядка

Решение. Минор М32 элемента a32 получается вычеркива­нием из данного определителя 3-й строки и 2-го столбца. По­лученный определитель 3-го порядка равен

Определение 2. Алгебраическим дополнением элемента aij определителя (14.3) называется число

Так, для приведенного выше примера алгебраическое до­полнение равно

Миноры и алгебраические дополнения играют важную роль в алгебре и ее приложениях. Одним из таких применений яв­ляется основополагающая теорема о способе вычисления опре­делителей.

ТЕОРЕМА 1. Определитель равен сумме произведений эле­ментов любой строки на их алгебраические дополнения:

Формула (14.4) называется разложением определителя по i-й строке. Доказательство этой теоремы мы опускаем. Анало­гичное утверждение имеет место и для разложения определи­теля по любому столбцу.

Формула (14.4) сводит вычисление определителя n-го по­рядка к вычислению n определителей (n - 1)-го порядка. Зная формулу (14.2) вычисления определителя 3-го порядка, мы, на­пример, можем найти определитель 4-го порядка путем разло­жения его на сумму алгебраических дополнений по формуле (14.4).

Пример 2. Вычислить определитель 4-го порядка

Решение. В принципе, разложить определитель можно по любой строке (столбцу), согласно формуле (14.4). Однако объ­ем вычислений можно существенно уменьшить, если выбрать такую строку (столбец), в которой побольше элементов равно нулю. Наиболее подходящей в нашем случае является вторая строка. Разложение по ней определителя имеет вил

14.2. Ранг матрицы и системы векторов

  1. Пусть дана матрица, содержащая m строк и п столбцов:

Выделим в ней произвольным образом k строк и k столбцов. Элементы, которые находятся на пересечении выделенных строк и столбцов, образуют квадратную матрицу k-го порядка; определитель этой матрицы называется минором k-го поряд­ка матрицы А. Очевидно, что в общем случае таких миноров k-го порядка может быть несколько. При этом максимальный порядок миноров равен минимальному из чисел т и п, т.е.

Из всех возможных миноров матрицы А выделим те из них, которые отличны от нуля. В свою очередь среди этих мино­ров можно найти по крайней мере один минор наибольшего порядка.

Определение 1. Наибольший порядок миноров, отличных от нуля, называется рангом матрицы (14.5).

Определение 2. Отличный от нуля минор матрицы, порядок которого равен рангу матрицы, называется базисным минором этой матрицы. Столбцы и строки матрицы, участвующие в образовании базисного минора, также называются базисными.

Заметим, что в общем случае у матрицы может быть не­сколько базисных миноров.

В п. 13.2 было дано определение ранга матрицы как наи­большего числа линейно независимых ее векторов-строк (стол­бцов). В курсе алгебры доказывается, что эти два определения эквивалентны. Приведенное в данном разделе определение да­ет возможность вычислять ранг матрицы, а значит, и ранг системы векторов.

Пример 1. Найти ранг матрицы размером 4 х 6:

Решение. Нетрудно видеть, что максимальный порядок миноров этой матрицы, отличных от нуля, равен двум, по­скольку миноры третьего порядка должны содержать элемен­ты по крайней мере двух строк со второй по четвертую. Такие определители равны нулю либо по признаку пропорциональ­ности двух строк, либо по признаку наличия в них нулевой строки. У этой матрицы существуют три базисные строки (ли­бо 1-я и 2-я, либо 1-я и 3-я), и пять ее столбцов являются ба­зисными (либо с 1-го по 5-й, либо со 2-го по 6-й); из них и формируются все базисные миноры второго порядка.

2. Рассмотрим квадратную матрицу порядка п, т.е. когда в матрице (14.5) т = п. Как было отмечено в п. 13.2, мат­рица порядка n является вырожденной и не имеет обратной матрицы, если ее ранг r < п. Максимальный порядок минора квадратной матрицы равен n; в этом случае базисный минор равен определителю этой матрицы. Стало быть, квадратная матрица является вырожденной, если ее определитель равен нулю.