Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы математики и ее приложения в экономическом образовании_Красс М.С., Чупрынов Б.П_2001 -688с.doc
Скачиваний:
1533
Добавлен:
23.03.2016
Размер:
12.97 Mб
Скачать

Геометрический смысл уравнения первого порядка

Рассмотрим уравнение у' = f(x,y). Пусть у = φ(x) его решение, график которого представляет собой непрерыв­ную интегральную кривую, причем в каждой ее точке сущест­вует касательная. Из дифференциального уравнения следует, что угловой коэффициент касательной к интегральной кривой в каждой ее точке равен правой части этого уравнения. Сле­довательно, уравнение первого порядка задает угловой коэф­фициент у' касательной к интегральной кривой как функцию двух переменных. Если каждой точке (x, у) сопоставить отрезок, направленный под углом наклона α = arctg (f (x, y)) к оси Ох, то мы получим поле направлений данного уравнения. В этом и заключается геометрический смысл дифференциально­го уравнения первого порядка.

Поле направлений позволяет проанализировать решение дифференциального уравнения и даже приближенно построить интегральные кривые.

Пример 1. Построить поле направлений уравнения y' = x2 - y.

Решение. Нетрудно видеть, что правая часть этого урав­нения удовлетворяет условиям теоремы Коши единственности и существования решения при любых x и у, т.е. интегральные кривые заполняют всю плоскость Оху. Найдем линии, на ко­торых наклон направлений одинаков, — так называемые изоклины. Так, если у' = 0, то имеем x2 - у = 0, т.е. на параболе у = x2 касательные к интегральным кривым горизонтальны (короткие черточки на рис. 9.2). При у' = 1 имеем х2 — у = 1, т.е. касательные к интегральным кривым направлены под уг­лом 45° к оси Ох на параболе у = х2 - 1. Наконец, на параболе у = x2 + 1 угол наклона касательных равен 135°. По полю на­правлений можно приближенно восстановить ход интеграль­ных кривых (сплошные линии).

9.2. Уравнения с разделяющимися переменными

Определение 5. Дифференциальное уравнение вида

где f1(x) и f2(y) — непрерывные функции, называется уравне­нием с разделяющимися переменными.

Подчеркнем, что правая часть уравнения представляет со­бой произведение, в котором один сомножитель зависит только от х, а другой — только от у. Метод решения такого вида урав­нений носит название разделения переменных. Запишем производную у' в ее эквивалентной форме как отношение дифферен­циала функции к дифференциалу независимой переменной , умножим обе части уравнения (9.3) на dx и поделим обе его части на f2(y), полагая, что f2(у) ≠ 0; получаем

В этом уравнении переменная у входит в левую часть, а пе­ременная х — только в правую, т.е. переменные разделены. Пусть у = φ(x) является решением уравнения (9.3), тогда при подстановке этого решения в уравнение (9.4) получаем тож­дество: два дифференциала равны друг другу, только в правой части дифференциал выражен через независимую переменную x, а в левой части — через функцию у. Поскольку дифференци­алы равны, то их неопределенные интегралы различаются на постоянную величину, т.е., интегрируя слева по переменной у, а справа по переменной х, получаем

где С — произвольная постоянная.

Рассмотрим примеры решения уравнений методом разде­ления переменных.

Пример 1. ху' — у = 0, найти частное решение при начальных условиях у0 = 2 при x0 = -4.

Решение. Разделим переменные, для чего перенесем у в правую часть, поделим обе части полученного уравнения на ху и умножим их на dx; получим

Интегрируя обе части этого уравнения (правую по x, а левую по у), имеем

где С — произвольная постоянная. При потенцировании полу­чаем

что эквивалентно уравнению у = ±Сх, или у = С1х. Получен­ная функция представляет семейство интегральных кривых. Для выделения частного решения при указанных начальных условиях подставим в эту формулу х = -4 и у = 2, откуда получим значение для С: С = -1/2. Окончательно частное решение имеет вид

Пример 2. у' = х, найти частное решение, проходящее через точку (0,1).

Решение. Разделяя переменные, получаем уравнение в дифференциалах

Интегрируя, имеем

где С — произвольная постоянная величина. После интегриро­вания (интеграл в правой части берется при помощи замены переменной) имеем уравнение семейства интегральных кривых

Выделение частного решения, проходящего через точку (0, 1), приводит к определению произвольной постоянной: С =, т.е. эта кривая описывается уравнением (с учетом выбора знака)