Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы математики и ее приложения в экономическом образовании_Красс М.С., Чупрынов Б.П_2001 -688с.doc
Скачиваний:
1529
Добавлен:
23.03.2016
Размер:
12.97 Mб
Скачать

Формула Маклорена в асимптотических формулах и вычислениях пределов функций

Формулы (5.3)-(5.7) представляют собой асимптотичес­кие формулы (или оценки) соответственно для функций eх, sin x, cos x, ln (l + x), (1 + x) α при x 0. Аналогичные раз­ложения можно получить с использованием формулы (5.2) и для других функций. Асимптотические формулы эффективно применяются при вычислении пределов функций. Покажем это на примере.

Пример 6. Найти .

Решение. Применяя формулу (5.2) при п = 2, получаем

5.3. Исследование функций и построение графиков Признак монотонности функции

Одной из существенных характеристик функции являет­ся ее поведение на отдельных интервалах — возрастание или убывание. Это определяется приводимой ниже теоремой, дока­зательство которой мы опускаем.

ТЕОРЕМА 2. Если функция f (x) дифференцируема и f'(x) ≥ 0 (f'(x) ≤ 0) на интервале (а, b), то она не убывает (не возрас­тает) на этом интервале.

При f'(x) > 0 (f'(x) < 0) имеем признак строгой моно­тонности, т.е. функция возрастает (убывает). Геометрическая интерпретация связи знака производной функции и характера ее изменения очевидна (рис. 5.1): если углы наклона касатель­ных на каком-то интервале являются острыми, то функция на этом интервале возрастает: tg φ > 0; при тупом угле наклона касательной функция убывает и tg φ < 0.

Точки локального экстремума

Определение 1. Точка x0 называется точкой локального мак­симума (минимума) функции f(x), если для любого х ≠ x0 в не­которой окрестности точки x0 выполнено неравенство f(x0) > f(х) (f(x0) < f(x)).

Локальный минимум и локальный максимум объединены общим названием локальный экстремум.

ТЕОРЕМА 3 (необходимое условие существования локаль­ного экстремума). Если функция f(x) дифференцируема в точке x0 и имеет в этой точке локальный экстремум, то f'(x0) = 0.

Геометрический смысл теоремы 5.3 указан на рис. 5.2: если в точках локальных экстремумов существуют касательные, то они параллельны оси Ох.

Точки, в которых касательные параллельны оси Оx, а зна­чит, производная равна нулю, называют точками возможного экстремума, или стационарными точками. Если x0 точка возможного экстремума, т.е. f'(x0) = 0, то она может и не быть точкой локального экстремума. Например, для функции f(x) = x3 (рис. 3.1) производная при х = 0 равна нулю, од­нако в этой точке нет локального экстремума. Таким образом, теорема 5.3 не является достаточным условием существования локального экстремума.

ТЕОРЕМА 4 (достаточное условие существования локаль­ного экстремума). Пусть функция f(x) дифференцируема в некоторой окрестности точки x0. Если при переходе через точку x0 слева направо производная f'(x) меняет знак с плю­са на минус (с минуса на плюс), то в точке x0 функция f(x) имеет локальный максимум (минимум). Если же f'(x) не ме­няет знака в δ-окрестности точки x0, то данная функция не имеет локального экстремума в точке x0.

Рассмотрим применение доказанных теорем на примерах нахождения точек локальных экстремумов функций.

Пример 1. Найти точки локального экстремума и интервалы монотонности функции f(x) = х3 — 7,5x2 + 18x.

Решение. Сначала находим производную f'(x) = 3x2 — 15x + 18. Приравнивая ее к нулю и решая уравнение х25х + 6 = 0, находим две точки возможного экстремума: x1 = 2 и x2 = 3. Нетрудно видеть, что f'(x) при переходе через точку x1 =2 меняет знак с "+" на "-", т.е. в этой точке имеет место локальный максимум; аналогично устанавливается, что в точке x2 = 3 функция f'(х) имеет локальный минимум.

Найдем теперь интервалы монотонности данной функции (рис. 5.3). Поскольку f'(x) > 0 при х (-,2), то в силу теоремы 5.2 функция монотонно возрастает на этом интер­вале; (2, 3) является интервалом монотонного убыванияf(x) (f'(x) < 0), а на интервале (3, +) функция монотонно воз­растает (f'(x) > 0).

Пример 2. Найти размеры консервной банки, имеющей форму цилиндра (радиус r и высоту h) заданного объема V, при кото­рых полная поверхность сосуда будет минимальной. Эта зада­ча имеет производственный смысл: найти оптимальные разме­ры банки, при которых затраты материала на ее изготовление будут минимальны.

Решение. Исходя из формулы объема цилиндра V = πr2h, выразим h:

Как известно, полная поверхность цилиндра дается формулой

Подставляя сюда формулу для h, получаем S как функцию от r:

Минимум этой функции найдем из условия S' (r) = 0, от­куда получаем уравнение 2rV / π r2 = 0. Из этого уравнения находим оптимальное значение r; его подставляем в формулу для h и окончательно вычисляем оптимальные размеры банки:

Например, при V = 0,33 л оптимальные размеры банки соста­вят: диаметр дна ≈ 7,5 см и высота ≈ 7,5 см.