Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы математики и ее приложения в экономическом образовании_Красс М.С., Чупрынов Б.П_2001 -688с.doc
Скачиваний:
1529
Добавлен:
23.03.2016
Размер:
12.97 Mб
Скачать

Упражнения

Решить следующие транспортные задачи, заданные распреде­лительной таблицей.

23.5. Требуется спланировать перевозку строительного мате­риала с трех заводов к четырем строительным площадкам, используя железнодорожную сеть. В течение каждого кварта­ла на четырех площадках требуется соответственно 5, 10, 20, 15 вагонов строительных материалов. Возможности различных заводов соответственно равны 10, 15 и 25 вагонов в квартал. Условия задачи даны в табл. 23.15. Числа на пересечении строк и столбцов таблицы означают стоимость перевозки одного ва­гона (усл. ед.).

23.6. Решить транспортную задачу, заданную распредели­тельной табл. 23.16, причем перевозки от 2-го поставщика ко 2-му потребителю и от 3-го поставщика к 1-му потребителю временно закрыты (в таблице эти тарифы обозначены боль­шим числом М > 0).

23.7. В трех пунктах производства имеется одинаковая про­дукция в объеме 200, 170, 130 т. Эта продукция должна быть доставлена потребителям в количестве 50, 220, 80, 110 и 140 т. Стоимости перевозок единицы продукции от каждого постав­щика к каждому потребителю заданы матрицей

В связи с неплатежеспособностью перевозки от первого пункта производства до первого пункта потребления и от вто­рого пункта производства до третьего пункта потребления вре­менно закрыты. Составить оптимальный план перевозок, при котором суммарные затраты на них минимальные.

23.8. Фирма получила заказы на три вида выпускаемой ею продукции (бокалы, чашки и вазы), которые необходимо изго­товить в течение следующей недели. Размеры заказов: бока­лы — 4000 шт., чашки — 2400 шт., вазы — 1000 шт.

Участок по изготовлению имеет три станка, на каждом из которых можно делать любой из заказанных видов продукции с одинаковой производительностью. Однако единичные затра­ты по каждому виду продукции различны в зависимости от используемого станка и заданы табл. 23.17.

Кроме того, известно, что производственные мощности 2-го и 3-го станков на следующую неделю составят 3000 шт., а 1-го станка — 2000 шт.

Используя модель транспортной задачи, найти план произ­водства для заказанных видов продукции, имеющий наимень­шую стоимость.

Глава 24. Целочисленное программирование

24.1. Общая формулировка задачи

Некоторые задачи линейного программирования требуют целочисленного решения. К ним относятся задачи по произ­водству и распределению неделимой продукции (выпуск стан­ков, телевизоров, автомобилей и т.д.). В общем виде математи­ческая модель задачи целочисленного программирования име­ет вид

при ограничениях:

Оптимальное решение задачи, найденное симплексным ме­тодом, часто не является целочисленным. Его можно округлить до ближайших целых чисел. Однако такое округление может дать решение, не лучшее среди целочисленных решений, или привести к решению, не удовлетворяющему системе ограниче­ний. Поэтому для нахождения целочисленного решения нужен особый алгоритм. Такой алгоритм предложен Гомори и состо­ит в следующем.

Симплексным методом находят оптимальное решение за­дачи. Если решение целочисленное, то задача решена. Если же оно содержит хотя бы одну дробную координату, то на­кладывают дополнительное ограничение по целочисленности и вычисления продолжают до получения нового решения. Ес­ли и оно является нецелочисленным, то вновь накладывают дополнительное ограничение по целочисленности. Вычисления продолжают до тех пор, пока не будет получено целочисленное решение или показано, что задача не имеет целочисленного ре­шения.

Пусть получено оптимальное решение опт = (f1, f2, ... , fr, 0, ..., 0), которое не является целочисленным, тогда по­следний шаг симплексной таблицы имеет следующий вид:

где r — ранг системы ограничений; hi,r+1 — коэффициент сим­плексной таблицы i-й строки, (r + 1)-го столбца; fi — свобод­ный член i-й строки.

Пусть fi и хотя бы одно hij (j = , r = ) — дроб­ные числа.

Обозначим через [fi] и [hij] целые части чисел fi и hij.

Определение 1. Целой частью числа fi называют наибольшее целое число, не превосходящее числа fi.

Дробную часть чисел fi и hij обозначим {fi} и {hij}, она определяется следующим образом:

Пример.

Если fi и хотя бы одно значение hij дробны, то с учетом введенных обозначений целых и дробных чисел дополнитель­ное ограничение по целочисленности примет вид

{hi,r+l} xr+1 + {hi,r+2} xr+2 + • • • + {hi,п} xп{fi}.

Примечания. 1) Если fi — дробное число, а все hij — целые числа, то задача линейного программирования не имеет целочисленного решения.

2) Ограничение целочисленности может быть наложено не на все переменные, а лишь на их часть. В этом случае задача является частично целочисленной.