Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы математики и ее приложения в экономическом образовании_Красс М.С., Чупрынов Б.П_2001 -688с.doc
Скачиваний:
1512
Добавлен:
23.03.2016
Размер:
12.97 Mб
Скачать

23.11. Приложение транспортных моделей к решению некоторых экономических задач

Алгоритм и методы решения транспортной задачи могут быть использованы при решении некоторых экономических за­дач, не имеющих ничего общего с транспортировкой груза. В этом случае величины тарифов сij имеют различный смысл в зависимости от конкретной экономической задачи. К таким задачам относятся следующие:

  • оптимальное закрепление за станками операций по обра­ботке деталей. В них cij является таким экономическим показателем, как производительность. Задача позволяет определить, сколько времени и на какой операции нуж­но использовать каждый из станков, чтобы обработать максимальное количество деталей. Так как транспорт­ная задача требует нахождения минимума, то значения cij берутся с отрицательным знаком;

  • оптимальные назначения, или проблема выбора. Имеет­ся т механизмов, которые могут выполнять т различ­ных работ с производительностью cij. Задача позволяет определить, какой механизм и на какую работу надо на­значить, чтобы добиться максимальной производитель­ности;

  • задача о сокращении производства с учетом суммарных расходов на изготовление и транспортировку продукции;

  • увеличение производительности автомобильного транс­порта за счет минимизации порожнего пробега. Умень­шение порожнего пробега сократит количество автомо­билей для перевозок, увеличив их производительность;

  • решение задач с помощью метода запрещения перевозок. Используется в том случае, если груз от некоторого по­ставщика по каким-то причинам не может быть направ­лен одному из потребителей. Данное ограничение мож­но учесть, присвоив соответствующей клетке достаточ­но большое значение стоимости, тем самым в эту клетку не будут производиться перевозки.

23.12. Выбор оптимального варианта использования производственного оборудования

На предприятии имеются три группы станков, каждая из которых может выполнять пять операций по обработке дета­лей (операции могут выполняться в любом порядке). Макси­мальное время работы каждой группы станков соответственно равно 100, 250, 180 ч. Каждая операция должна выполняться соответственно 100, 120, 70, 130 ч.

Определить, сколько времени и на какую операцию нужно использовать каждую группу станков, чтобы обработать мак­симальное количество деталей.

Производительность каждой группы станков на каждую операцию задана матрицей

Решение. Воспользуемся алгоритмом решения закрытой транспортной задачи (табл. 23.13).

Так как в задаче требуется найти максимум, а согласно алгоритму транспортной задачи находится минимум, тарифы умножим на (—1).

Находим потенциалы свободных клеток:

Так как Δ14 = 3 > 0, перераспределим грузы, получим

Полученное перераспределение грузов занесем в табл. 23.14.

Оценки свободных клеток составляют

Найденное решение является оптимальным, так как все оценки свободных клеток отрицательные. Итак,

Таким образом, на первой группе станков целесообразно выполнять операции 1 и 4 продолжительностью 40 и 60 ч со­ответственно, на второй группе — операции 1, 2 и 3 продолжи­тельностью 60, 120 и 70 ч соответственно, на третьей группе — операции 4 и 5 продолжительностью 50 и 130 ч соответственно. При этом максимальное число обработанных деталей составит 5 170 шт.