Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы математики и ее приложения в экономическом образовании_Красс М.С., Чупрынов Б.П_2001 -688с.doc
Скачиваний:
1481
Добавлен:
23.03.2016
Размер:
12.97 Mб
Скачать

23.8. Открытая транспортная задача

При открытой транспортной задаче сумма запасов не сов­падает с суммой потребностей, т.е.

При этом:

а) если

то объем запасов превышает объем потребления, все по­требители будут удовлетворены полностью и часть за­пасов останется невывезенной. Для решения задачи вво­дят фиктивного (n + 1)-потребителя, потребности кото­рого

Модель такой задачи будет иметь вид

при ограничениях:

б) если

то объем потребления превышает объем запасов, часть потребностей останется неудовлетворенной. Для реше­ния задачи вводим фиктивного (m + 1)- поставщика

:

Модель такой задачи имеет вид

при ограничениях:

При введении фиктивного поставщика или потребителя от­крытая транспортная задача становится закрытой и решается по ранее рассмотренному алгоритму для закрытых транспорт­ных задач, причем тарифы, соответствующие фиктивному по­ставщику или потребителю, больше или равны наибольшему из всех транспортных тарифов, иногда их считают равными нулю. В целевой функции фиктивный поставщик или потреби­тель не учитывается.

23.9. Определение оптимального варианта перевозки грузов с учетом трансформации спроса и предложений

Рассмотрим следующую задачу.

Составить оптимальный план перевозки грузов от трех по­ставщиков с грузами 240, 40, 110 т к четырем потребителям с запросами 90, 190, 40 и 130 т. Стоимости перевозок единицы груза от каждого поставщика к каждому потребителю даны матрицей

Решение. Запасы грузов у поставщиков: = 390 т. Запросы потребителей: = 450 т; так как

< то вводим фиктивного поставщика с грузом а = 450 - 390 = 60 т.

Тариф фиктивного поставщика 4ф примем равным 20 усл. ед.

Так как т + п 1 = 7, а число занятых клеток равно 6, то для исключения вырожденности введем в клетку (2, 2) нулевую поставку. Оценки свободных клеток:

(табл. 23.10).

Оценка свободной клетки (1,3) больше нуля, перераспреде­лим грузы:

Запишем полученное перераспределение грузов в табл. 23.11.

Имеем

Получили оптимальное решение:

Стоимость транспортных расходов — 3120 усл. ед.

23.10. Экономический анализ транспортных задач

Проведем экономический анализ задачи на конкретном при­мере.

Пример 3. Три торговых склада могут поставлять некоторое изделие в количестве 9, 4 и 8 т. Величины спроса трех мага­зинов розничной торговли на это изделие равны 3, 5 и 6 т.

Какова минимальная стоимость транспортировки от по­ставщиков к потребителям? Провести анализ решения при условии, что единичные издержки транспортировки в усл. ед. даны в матрице

Решение. Запасы складов: = 21 т, потребности магазинов: = 14 т, имеем открытую задачу. Введем фиктивный магазин со спросом b = 7 т и тарифом 20 усл. ед. (табл. 23.12).

Оценки свободных клеток:

Оценки Δ32 = Δ34 = 0, задача имеет альтернативный оп­тимум, и одно из решений имеет вид

Минимальная стоимость транспортных расходов

Итоговое распределение перевозок, а также значения оце­нок свободных клеток, которые называют теневыми ценами, можно использовать при проведении экономического анализа. Теневая цена показывает, на сколько увеличится общая сто­имость транспортных расходов, если в пустую клетку помес­тить одно изделие. Например, если придется осуществить пе­ревозку одного изделия с торгового склада 2 в розничный ма­газин 3, то увеличение стоимости составит |Δ23| = | - 13| = 13 усл. ед., что больше, чем тариф груза клетки (2,3), рав­ный 8 усл. ед. Дополнительное увеличение стоимости транспортных расходов появляется в связи с перераспределением пе­ревозок. Составим цикл распределения перевозок с помещени­ем груза в пустую клетку (2, 3):

В клетку (2, 3) помещаем груз 4 т, в (1, 3) вместо 1т — 5т, в (2, 2) вместо 4т — пустая клетка.

Изменение расходов составит 4 ∙ 20 – 4 ∙ 10 + 8 ∙ 4 – 4 ∙ 5 = 72 усл. ед. или на одно изделие 72 : 4 = 13 усл. ед.

Если теневая цена клетки равна нулю (Δ32 = 0), то зада­ча имеет альтернативный оптимум. Перераспределим грузы относительно клетки (3, 2):

Еще одно оптимальное решение задачи имеет вид

Минимальная стоимость транспортных расходов

Аналогичный анализ можно провести и по остальным сво­бодным клеткам.

Теневые цены свободных клеток можно использовать в ка­честве индикаторов изменений стоимости транспортировки од­ного изделия или тарифа.

Например, теневая цена пустой клетки (3, 3) равна |Δ33| = | - 2| = 2, а фактическая цена транспортировки одного изде­лия — 7 усл. ед. Следовательно, для того чтобы использование данной клетки в распределении перевозок привело к снижению общих транспортных расходов, нужно, чтобы тариф этой клет­ки был не более 7 – 2 = 5 усл. ед.

Проведем стоимостный анализ изменений в занятых клет­ках. При снижении тарифа увеличение числа изделий в данной клетке выгодно. Если же тарифы занятых клеток возрастают, то при достижении ими определенного значения использование этой клетки является нежелательным и необходимо произвести перераспределение грузов.

В качестве примера определим допустимые изменения та­рифа занятой клетки (1, 3). Тариф клетки равен 5 усл. ед. за одно изделие. Уменьшение этой величины не повлияет на объ­ем перевозок, так как указанное количество изделий в клетке удовлетворяет всю потребность магазина 3.

Если тариф клетки (3,1) становится больше 5 усл. ед., то при составлении циклов будет задействована пустая клетка (2, 3) с |Δ23| = 13 или (3, 3) с |Δ33| = 2. В обоих циклах клетка (1, 3) будет иметь знак "—" и любое увеличение тарифа повле­чет снижение теневой цены пустой клетки (2, 3) или (3, 3).

Изменение объема перевозок будет иметь место в случае, если тариф клетки (1,3) возрастет более чем на 2 усл. ед. и превысит 7 усл. ед. При этом теневая цена клетки (3,3) станет положительной и окажется невыгодным использование клетки (1.3).

Таким образом, для получения оптимального распределе­ния перевозок тариф клетки (1,3) должен изменяться в диапа­зоне от 0 до 7 усл. ед. Внутри указанного промежутка происхо­дит лишь изменение общей стоимости транспортных расходов, а распределение перевозок не меняется.