
- •А кадемия управления при Президенте Республики Беларусь
- •От автора
- •Содержание
- •Раздел 2. Радиационная безопасность 10
- •Тема 1. Физическая природа и источники радиационной опасности 10
- •Тема 2. Основы радиационной безопасности живых организмов 60
- •Тема 3. Катастрофа на чернобыльской аэс и ее последствия для республики беларусь 126
- •Тема 4. Мероприятия по радиационной защите 161
- •Раздел 2. Радиационная безопасность
- •Явление радиоактивности
- •Основной закон радиоактивного распада радионуклида
- •Связь между массой радионуклида и его активностью
- •Значения величин а1 и а2
- •Контрольные вопросы к лекции №1
- •Лекция 2. Ионизирующие излучения, их характеристики и методы измерений Краткая характеристика ионизирующих излучений
- •Взаимодействие ионизирующих излучений с веществом
- •Гамма-излучение
- •Бета-излучение
- •Альфа-излучение
- •Пробеги бета-частиц
- •Пробеги альфа-частиц в воздухе, биологической ткани и алюминии
- •Характеристики ионизирующих излучений. Единицы измерения
- •Коэффициенты качества излучения
- •Взвешивающие коэффициенты wt*
- •Основные способы обнаружения и измерения ионизирующих излучений
- •Контрольные вопросы к лекции №2
- •Лекция 3. Источники ионизирующих излучений
- •Космическое излучение
- •Земная радиация
- •Антропогенные источники ионизирующих излучений
- •Область применения и вид используемых закрытых источников ионизирующего излучения в различных областях
- •Контрольные вопросы к лекции №3
- •Тема 2. Основы радиационной безопасности живых организмов Лекция 4. Биологическое действие ионизирующих излучений
- •Воздействие ионизирующих излучений на биологическую ткань
- •Механизм воздействия радиации на молекулы и клетки
- •Биологическое действие ионизирующих излучений
- •Радиационные повреждения
- •Молекула воды
- •Молекула днк
- •Молекула белка
- •Углеводы
- •Действие ионизирующих излучений на клетки крови
- •Радиочувствительность. Реакция органов и систем человека на облучение
- •Некоторые особенности радиоустойчивости органов при внешнем облучении
- •Действие излучения на человека при облучении всего организма
- •Реакция организма на облучение. Радиационные синдромы
- •Некоторые особенности реакции органов и систем при внутреннем облучении
- •Детерминированные и стохастические эффекты. Степени лучевой болезни
- •Детерминированные эффекты
- •Острая лучевая болезнь (олб)
- •Показатели степени тяжести олб в фазе первичной острой реакции
- •Стохастические эффекты
- •Хроническая лучевая болезнь (хлб)
- •Контрольные вопросы к лекции №4
- •Лекция 5. Основные принципы, критерии и нормы радиоактивной безопасности Введение
- •Международные нормы радиационной безопасности
- •Проблемы оценки малых доз облучения
- •Номинальные коэффициенты вероятности стохастических эффектов
- •Коэффициенты вероятности рака для отдельных органов
- •Принципы, цели и критерии радиационной безопасности
- •Нормирование облучения для практической деятельности
- •Основные дозовые пределы
- •Пределы годового поступления некоторых радионуклидов для населения
- •Вмешательство. Уровни вмешательства
- •Нормы радиационной безопасности нрб-2000
- •Раздел 1. Общие положения.
- •Раздел 2. Требования к ограничению техногенного облучения в контролируемых условиях.
- •Общие положения
- •Требования к ограничению техногенного облучения в контролируемых условиях
- •Требования к ограничению облучения населения
- •Требования к контролю за выполнением норм
- •Санитарные нормы и правила
- •Основные принципы обеспечения радиационной безопасности
- •Пути обеспечения радиационной безопасности
- •Классификация радиационных объектов по потенциальной опасности
- •Методы и средства индивидуальной защиты и личной гигиены
- •Радиационная безопасность пациентов и населения при медицинском облучении
- •Радиационная безопасность населения при воздействии природных источников изучения
- •Радиационная безопасность при радиационной аварии
- •Контрольные вопросы к лекции №5
- •Тема 3. Катастрофа на чернобыльской аэс и ее последствия для республики беларусь Лекция 6. Катастрофа на Чернобыльской аэс и особенности радиоактивного загрязнения территории Республики Беларусь
- •События, приведшие к аварии на чаэс
- •Авария, ее развитие и ликвидация
- •Выбросы и особенности радиоактивного загрязнения территории Республики Беларусь
- •Изотопы, попавшие в выброс в результате чернобыльской аварии (оценки на январь 2000 г.)
- •Особенности миграции радионуклидов и прогнозирование радиоактивного загрязнения местности
- •Контрольные вопросы к лекции №6
- •Лекция 7. Последствия радиоактивного загрязнения территорий для Республики Беларусь Социально-экономические потери Республики Беларусь
- •Последствия катастрофы на Чернобыльской аэс для здоровья населения
- •Некоторые выводы из оценки заболеваний населения
- •Последствия катастрофы на Чернобыльской аэс для животного мира
- •Последствия катастрофы на Чернобыльской аэс для растительного мира
- •Контрольные вопросы к лекции №7
- •Тема 4. Мероприятия по радиационной защите Лекция 8. Мероприятия по радиационной защите и радиационной безопасности населения Основные мероприятия по радиационной защите
- •Краткая характеристика мероприятий по радиационной защите и радиационной безопасности населения
- •Эвакуация и отселение
- •Организация медицинской помощи пострадавшим от радиации
- •Система радиационного мониторинга в Республике Беларусь
- •Физические, химические и биологические способы защиты человека от радиации
- •Радиопротекторы
- •Ускоренное выведение радионуклидов из организма
- •Применение принципа конкурентного замещения
- •Употребление продуктов, слабо аккумулирующих радионуклиды
- •Насыщение организма микроэлементами
- •Употребление повышенного количества отдельных витаминов
- •Рациональное питание
- •Периодическая очистка органов и систем человека от шлаков
- •Санитарно-гигиенические мероприятия
- •Контрольные вопросы к лекции №8
- •Лекция 9. Ликвидация последствий радиоактивного загрязнения территорий Дезактивация территории, объектов, техники и продуктов питания
- •Общая методика оценки дезактивации
- •Способы дезактивации
- •Дезактивация зданий и сооружений
- •Дезактивация транспорта
- •Дезактивация одежды
- •Санитарная обработка людей
- •Дезактивация продуктов питания
- •Организация агропромышленного производства в условиях радиоактивного загрязнения
- •Растениеводство
- •Животноводство
- •Контрольные вопросы к лекции №9
- •Экзаменационные вопросы по разделу «радиационная безопасность»
- •Практические вопросы по первому и второму разделам
- •Литература
- •Защита населения и хозяйственных объектов в чрезвычайных ситуациях. Радиационная безопасность.
- •Часть II Курс лекций
- •220007, Г. Минск, ул. Московская, 17.
Связь между массой радионуклида и его активностью
На практике часто необходимо определять массу радионуклида по известной активности и наоборот.
Известно, что масса одного грамм-моля вещества (радионуклида) численно равна массовому числу М, выраженному в граммах. С другой стороны, число атомов в одном грамм-моле равно числу Авогадро, т.е. NА= 6,023·1023моль–1. Тогда можно составить пропорцию:
m --------------- М
N --------------- NA
Отсюда следует:
m = MN/ NА = MA/lNА = MAT/0,693 NА; (27)
где: А –активность радионуклида;N– число радиоактивных атомов;Т–период полураспада. В формуле (27) учтено, чтоN=A/и = 0,693/Т.
Для удобства расчета и учета единиц выражение (27) можно записать в виде:
m = a1MTA; m = a2MTA, (28)
где величина а1 – используется, если активность выражена в Беккерелях,а2– когда активность выражена в Кюри, а1 и а2представлены в таблице 1.
Таблица 1
Значения величин а1 и а2
Величины а1 и а2 1 и а2 |
Период полураспада Т | ||||
с |
мин |
ч |
сут |
год | |
а1 |
2,410–24 |
1,4410–22 |
8,6210–21 |
2,0710–19 |
7,5610–17 |
а2 |
8,8610–14 |
5,3210–12 |
3,1910–10 |
7,6610–9 |
2,8010–6 |
Представленная на графике (рис.2) зависимость определяет скорость распада одного радионуклида. Однако, в случае превращения одного радионуклида в другой (дочерний) радионуклид, характер этой зависимости изменится. Большинство естественных радионуклидов имеют длинные цепи превращений одних радионуклидов в другие, так называемые радионуклидные ряды, пока, наконец, они не превратятся в стабильный изотоп.
Контрольные вопросы к лекции №1
Понятие радионуклида.
Почему ядра одних изотопов претерпевают радиоактивный распад, а другие нет?
Явление радиоактивности (примеры альфа-распада и бета-распада).
Особенности спада радиоактивности по основному закону радиоактивного распада.
Пересчитать 5 Ки/км2в Бк/кг и 5 Ки в Бк.
Пересчитать 100 Бк/кг в Ки/м2.
Лекция 2. Ионизирующие излучения, их характеристики и методы измерений Краткая характеристика ионизирующих излучений
Ионизирующее излучение (ИИ) – это излучение, взаимодействие которого со средой приводит к образованию в этой среде ионов разных знаков. Излучение считается ионизирующим, если оно способно разрывать химические связи молекул. Ионизирующее излучение делят на корпускулярное и фотонное.
Радиоволны, световые волны, тепловая энергия Солнца не относятся к ионизирующим излучениям, так как они не вызывают повреждения организма путем ионизации.
Корпускулярное –это поток частиц с массой отличной от нуля (электроны, протоны, нейтроны, альфа-частицы).
Фотонное– это электромагнитное излучение, косвенно ионизирующее излучение (гамма излучение, характеристическое излучение, тормозное излучение, рентгеновское излучение, аннигиляционное излучение).
Альфа-излучение– это поток альфа-частиц (ядер атомов гелия), испускаемых при радиоактивном распаде, а также при ядерных реакциях и превращениях. Альфа-частицы обладают сильной ионизирующей способностью и незначительной проникающей способностью. В воздухе они проникают на глубину несколько сантиметров, в биологической ткани – на глубину доли миллиметра, задерживается листом бумаги, тканью одежды. Альфа-излучение особо опасно при попадании его источника внутрь организма с пищей или с вдыхаемым воздухом.
Бета-излучение– это поток электронов или позитронов, испускаемых ядрами радиоактивных элементов при бета-распаде. Их ионизирующая способность меньше, чем у альфа-частиц, но проникающая способность во много раз больше, и составляет десятки сантиметров. В биологической ткани они проникают на глубину до 2 см, одеждой задерживается только частично. Бета-излучение опасно для здоровья человека, как при внешнем, так и при внутреннем облучении.
Протонное излучение– это поток протонов, составляющих основу космического излучения, а также наблюдаемых при ядерных взрывах. Их пробег в воздухе и проникающая способность занимают промежуточное положение между альфа и бета-излучением.
Нейтронное излучение– поток нейтронов, наблюдаемых при ядерных взрывах, особенно нейтронных боеприпасов и работе ядерного реактора. Последствия его воздействия на окружающую среду зависят от начальной энергии нейтрона, которая может меняться в пределах 0,025 –300 МэВ.
Гамма-излучение– электромагнитное излучение (длина волны 10–10–10–14м), возникающее в некоторых случаях при альфа и бета-распаде, аннигиляции частиц и при возбуждении атомов и их ядер, торможении частиц в электрическом поле. Проникающая способность гамма-излучения значительно больше, чем у вышеперечисленных видов излучений. Глубина распространения гамма-квантов в воздухе может достигать сотен и тысяч метров. Ионизирующая способность (косвенная) значительно меньше, чем у вышеперечисленных видов излучений. Большинство гамма-квантов проходит через биологическую ткань, и только незначительное количество поглощается телом человека.
Тормозное излучение– фотонное излучение с непрерывным энергетическим спектром, испускаемое при уменьшении кинетической энергии заряженных частиц. Воздействие на окружающую среду такое, как и гамма-излучения.
Характеристическое излучение– фотонное излучение с дискретным энергетическим спектром, возникающее при изменении энергетического состояния электронов атома. Воздействие на биологическую ткань аналогично гамма-излучению.
Аннигиляционное излучение– фотонное излучение, возникающее в результате аннигиляции частицы и античастицы (например, позитрона и электрона). Воздействие на биологическую ткань аналогично гамма-излучению.
Рентгеновское излучение– фотонное излучение (длина волны 10–-9–10–-12 м), состоящее из тормозного и (или) характеристического излучения, генерируемого рентгеновскими аппаратами, и возникающее при некоторых ядерных реакциях. В отличие от гамма-излучения оно обладает такими свойствами как отражение и преломление.