Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

belyaev_a_e_konakova_r_v_red_karbid_kremniya_tehnologiya_svo

.pdf
Скачиваний:
105
Добавлен:
23.03.2016
Размер:
9.1 Mб
Скачать

288 ǮȑȓȓȐ Ǽ.Ǯ., ǯȓșȭȓȐ Ǯ.dz., ǯȜșȠȜȐȓȤ ǻ.ǿ., ǸȖȟȓșȓȐ ǰ.ǿ., ǸȜțȎȘȜȐȎ Ǿ.ǰ. Ȗ ȒȞ

tured by gas phase inÀltration of pine wood. Proceedings of the 25th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: B. Ceram. Eng. Sci. Proc. – 2001. – 22 (4). – P. 109–116.

68.Vogli E., Mukerji J., Hoffmann C., Kladny R., Sieber H., Greil P. Conversion of oak to cellular silicon carbide by gas-phase reaction with silicon monoxide // J. Am. Ceram. Soc. – 2001. – 86 (6). – P. 1236–1240.

69.Jun-Min Qian, Zhi-Hao Jin, Xiao-Wen Wang. Porous SiC ceramics fabricated by reactive inÀltration of gaseous silicon into charcoal // Ceramics International. – 2004. – 30. – P. 947–951.

70.Streitwieser D., Popovska N., Gerhard H., Emig G. Application of the chemical vapor inÀltration-reaction (CVI-R) technique for the preparation of high porous biomorphic SiC ceramics derived from paper // J. Eur. Ceram. Soc. – 2005. – 25 (6). – P. 817–828.

71.Streitwieser D., Popovska N., Gerhard H. Optimization of the ceramization process for the production of three-dimensional biomorphic porous SiC ceramics by chemical vapor inÀltration (CVI) // J. Eur. Ceram. Soci. – 2006. – 26. – P. 2381–2387.

72.Sieber H., Vogli E., Muller F., Greil P., Popovska N., Gerhard H. CVI-R gas phase processing of porous biomorphic SiC-ceram- ics // Key Eng. Mat. – 2001. – 206–213. – P. 2013.

73.Kaindl A. Cellular SiC ceramics from wood, Ph.D. Thesis, University of Erlangen-Nuernberg (German), 2000.

74.Geiger G.H., Poirier D.R. Transport Phenomena in Metallurgy. – New York: Addison-Wesley, 1980.

75.Daniels F., Alberty R.A. Physical Chemistry. – New York: Wiley, 1967. – P. 278–279.

76.Krenkel W., Gern F. Microstructure and characteristics of CMC manufactured via liquid phase route // Proceedings of the Ninth International Conference on Composite Materials, ICCM-9, Madrid (Spain), 12–16 July, 1993.

77.Whalen T.J., Anderson A.T. Wetting of SiC, Si3N4 and carbon by

ȅȎȟȠȪ I, DZșȎȐȎ 9

289

 

 

Si and binary Si alloys // J. Am. Ceram. Soc. – 1975. – 58 (9–10). –

P.396–399.

78.Battezzati L., Greer A.L. The viscosity of liquid metals and alloys // Acta Metall. – 1989. – 37. – P. 1791.

79.Mallick D., Chakrabarti O.P., Maiti H.S., Majumdar R. Si/SiC ceramics from wood of Indian dicotyledonous mango tree // Ceramics International. – 2007. – 33. – P. 1217–1222.

80.Li J.-G., Hausner H. Wetting and inÀltration of graphite materials by molten silicon // Scripta Metallurgica et Materialia. – 1995. – 32 (3). – P. 377–382.

81.Li J.-G., Hausner H. Reactive Wetting in the Liquid-Silicon/ Solid-Carbon System // J. Am. Ceram. Soc. – 1996. – 79 (4). –

P.873–880.

82.Dezellus O., Jacques S., Hodajand F., Eustathopoulos N. Wetting and inÀltration of carbon by liquid silicon // J. Mat. Sci. – 2005. – 40. – P. 2307–2311.

83.Whalen T.J., Anderson A.T. Wetting of silicon carbide, silicon nitride, and carbon by silicon and binary silicon alloys // J. Am. Ceram. Soci. – 1975. – 58 (9–10). – P. 396–399.

84.Naidich Y.V., Zhuravlev V., Krasovskaya N. The wettability of silicon carbide by Au – Si alloys // Mat. Sci. Eng. A. – 1998. – 245. P. 293–299.

85.Guangya Hou, Zhihao Jin, Junmin Qian. Effect of starting Si contents on the properties and structure of biomorphic SiC ceramics // J. Mat. Proc. Technol. – 2007. – 182. – P. 34–38.

86.Guangya Hou, Zhihao Jin, Junmin Qian. Effect of holding time on the basic properties of biomorphic SiC ceramic derived from beech wood // Mat. Sci. Eng. A. – 2007. – 452–453. – P. 278–283.

87.Fitzer E., Gadow R. Fibre reinforced silicon carbide // Am. Ceram. Soc. Bull. – 1986. – 65 (2). – P. 326–335.

88.Zhou H., Singh R.N. Kinetics model for the growth of silicon carbide by the reaction of liquid silicon with carbon // J. Am. Ceram. Soc. – 1995. – 78 (9). – P. 2456–2462.

290 ǮȑȓȓȐ Ǽ.Ǯ., ǯȓșȭȓȐ Ǯ.dz., ǯȜșȠȜȐȓȤ ǻ.ǿ., ǸȖȟȓșȓȐ ǰ.ǿ., ǸȜțȎȘȜȐȎ Ǿ.ǰ. Ȗ ȒȞ

89.Zollfrank C., Sieber H. Microstructure evolution and reaction mechanism of biomorphous SiSiC ceramics // J. Am. Ceram. Soc. – 2005. – 88 (1). – P. 51–58.

90.Gadow R. Die Silizierung von Kohlenstoff, Ph.D. thesis, University of Karlsruhe, 1986.

91.Pyzalski M., Bialoskorski J., Walasek E. Reaction between carbon Àbres and molten silicon: heat determination using DTA // J. Therm. Anal. – 1986. – 31. – P. 1193–1196.

92.Pampuch R., Walasek E., Bialoskorski J. Mechanism of reactions in Sil+Cf system // Ceram. Int. – 1987. – 13 (1). – P. 63–68.

93.Sawyer G.R., Page T.F. Microstructural characterization of REFEL (reaction bonded) silicon carbide // J. Mater. Sci. – 1978. – 13 (4). – P. 885–904.

94.Chakrabarti O.P., Das P.K., Mukerji J. Growth of SiC particles

in reaction sintered SiC // Mat. Chem. Phys. – 2001. – 67.

P. 199–202.

95.Scace R.T., Slack S.A. Solubility of carbon in silicon and germanium // J. Chem. Phys. – 1959. – 30(6). – P. 1551–1555.

96.Pancholi V., Mallick D., AppaRaoc Ch., Samajdar I., Chakrabarti O.P., Maiti H.S., Majumdard R. Microstructural characterization using orientation imaging microscopy of cellular Si/SiC ceramics synthesized by replication of Indian

dicotyledonous plants // J. Eur. Ceram. Soci. – 2007. – 27. –

P. 367–376.

97.Kiselov V.S., Kalabukhova E.N., Sitnikov A.A., Lytvyn P.M., Poludin V.I., Yukhymchuk V.O., Belyaev A.E. Effect of Si inÀltration method on the properties of biomorphous SiC // Semiconductor Physics, Quantum Electronics & Optoelectronics. – 2009. – 12, N1. – P. 68–71.

98.Kiselov V.S., Kalabukhova E.N., Sitnikov A.A., Litvin P.M., Poludin V.I., Yukhymchyk V.A., Belyaev A.E. Effect of Si inÀltration method on the biomorphous SiC microstructure properties. NANSIS-2007, Kiev (Ukraine), 2007. – C. 571.

ȅȎȟȠȪ I, DZșȎȐȎ 9

291

 

 

99.Kiselov V.S., Kalabukhova E.N., Lukin S.N., Sitnikov A.A., Yukhymchyk V.A., Yakimova R. Optical and electron paramagnetic resonance study of sponge silicon carbide by direct synthesis // Mat. Sci. Forum. –2007. – 556–557. – P. 399–402.

100.Kiselev V.S., Savchenko D.V., Yukhymchuk V.A., Sitnikov A.A., Poppl A., Kalabukhova E.N. Optical and Magnetic Resonance Study of Biomorphous SiC, Perspectives for Medical Application, Modern Development of Magnetic Resonance, Kazan (Russia), 2007. – P. 178.

101.ǯȱșȭȱȐǼ.ǣ., ǸȖȟȓșȪȜȐǰ.ǿ. ǿȝȜȟȳȏȐȖȑȜȠȜȐșȓțțȭȐȖȞȜȏȳȐȕȘȎȞȏȳȒȡ ȘȞȓȚțȳȬ; ǽȎȠȓțȠ ȁȘȞȎȴțȖ Ɋ87187, ȕȎȭȐșȓț 09.08.2007. ȜȝȡȏșȳȘȜȐȎț 25.06.2009.

102.Kiselov V.S., Poludin V.I., Kiselyuk M.P., Kryskov T.Ǯ., Belyaev A.E. Effect of macrostructure on the thermoelectric properties of biomorphous SiC/Si ceramics // Semiconductor Physics,

Quantum Electronics & Optoelectronics. – 2009. – 12, N1. –

P. 64–67.

103.Yukhymchyk V.O., Kiselov V.S., Belyaev A.E., Chursanjva M.V., Valach M.Ya., Raman spectroscopy of bio-SiC ceramics. International Meeting, Clusters and nanostructured materials (CNM-2), Uzhgorod (Ukraine), 27–30 September, 2009. – P. 138.

104.ȌȣȖȚȥȡȘ ǰ.Ǽ., ǸȖȟȓșȪȜȐ ǰ.ǿ., ǯȓșȭȓȐ Ǽ.ǣ., ȅȡȞȟȎțȜȐȎ Ǻ.ǰ., ǰȎșȎȣ Ǻ.ȍ. ǿȝȓȘȠȞȜȟȘȜȝȳȭ ǸǾǿ ȏȳȜ-SiC ȘȓȞȎȚȳȘȖ. IV ȁȘȞȎȴțȟȪȘȎ țȎȡȘȜȐȎ ȘȜțȢȓȞȓțȤȳȭ ȕ ȢȳȕȖȘȖ țȎȝȳȐȝȞȜȐȳȒțȖȘȳȐ,

ǵȎȝȜȞȳȔȔȭ (ȁȘȞȎȴțȎ), 15–19 ȐȓȞȓȟțȭ, 2009. – 1. – C. 166–167.

105.Gibson L.J., Ashby M.F. Cellular Solids: Structure and Properties. – Pergamon Press, 1988; Gibson L.J., Ashby M.F. Cellular Solids: Structure and Properties. – Cambridge: University Press, 1999. – 510 p.

106.Martinez-Fernandez J., Valera-Feria F.M., Singh M. High temperature compressive mechanical behavior of biomorphic silicon carbide ceramics // Scripta Mat., 2000. – 43. – P. 813–818.

107.Greil P., Vogli E., Fey T., Bezold A., Popovska N., Gerhard H., Sieber H. Effect of microstructure on the fracture behavior of biomorphous silicon carbide ceramics // J. Eur. Ceram. Soc. – 2002. – 22. – P. 2697–2707.

292 ǮȑȓȓȐ Ǽ.Ǯ., ǯȓșȭȓȐ Ǯ.dz., ǯȜșȠȜȐȓȤ ǻ.ǿ., ǸȖȟȓșȓȐ ǰ.ǿ., ǸȜțȎȘȜȐȎ Ǿ.ǰ. Ȗ ȒȞ

108.Rice R.W. Evaluation and extension of physical property–poros- ity models based on minimum solid area // J. Mat. Sci. – 1996. – 31. – P. 102–118; Rice R.W. Porosity of Ceramics. – New York: M. Dekker, 1998.

109.Greil P., Lifka T., Kaindl A. Biomorphic cellular silicon carbide ceramics from wood. II. Mechanical properties // J. Eur. Ceram. Soc. – 1998. – 18. – P. 1975–1983.

110.Fernandez J.M., Munoz A., Lopez A.R.D., Feria F.M.V., Domin- guez-Rodriguez A., Singh M. Microstructure-mechanical properties correlation in siliconized silicon carbide ceramics // Acta Mater. – 2003. – 51. – P. 3259–3275.

111.Arellano-Lopez A.R., Martinez-Fernandez J., Varela-Feria F.M., Orlova T.S., Goretta K.C., Gutierrez-Mora F., Chen N., Routbort J.L. Erosion and strength degradation of biomorphic SiC // J. Eur. Ceram. Soc. – 2004. – 24. – P. 861–870.

112.Kaul V.S., Faber K.T., Sepulveda R., Lopez A.R.D., Martinez-Fernan- dez J. Precursor selection and its role in the mechanical properties of porous SiC derived from wood // Mater. Sci. Eng. A: Struct. – 2006. – 428. – P. 225–232.

113.Ryskevitch E. Discussion of ball milling of pure ceramics diborides // J. Am. Ceram. Soc. – 1953. – 36. – P. 65–8.

114.Shaffer P.T.B. Handbooks of High Temperature materials. Materials Indeȣ. – N.Y.: Plenum Press, 1964. – 1.

115.Harris G.L. Properties of Silicon carbide; INSPEC, 1995, 8.

116.Varela-Feria F.M., Martinez-Fernandez J., Arellano-Lopez A.R.de, Singh M. Low density biomorphic silicon carbide: microstructure, and mechanical properties // J. Eur. Ceram. Soci. – 22. – P. 2719–2725.

117.Martinez-Fernandez J., Valera-Feria F.M., Singh M. High temperature compressive mechanical behavior of biomorphic silicon carbide ceramics // Scripta Mat. – 2000. – 43. – P. 813–818.

118.Jun-Min Qian, Ji-Ping Wang, Zhi-Hao Jin. Preparation and properties of porous microcellular SiC ceramics by reactive inÀltration of Si vapor into carbonized basswood // Mat. Chem. Phys. – 2003. – 82. – P. 648–653.

ȅȎȟȠȪ I, DZșȎȐȎ 9

293

 

 

119.Noudem J.G., Lemonnier S., Prevel M., Reddy E.S., Guilmeau E., Goupil C. Thermoelectric ceramics for generators // J. Eur. Ceram. Soc. – 2008. – 28. – P. 41–48.

120.Fujisawa M., Hata T., Bronsveld P., Castro V., Tanaka F., Kikuchi H., Imamura Y. Thermoelectric properties of SiC/C composites from wood charcoal by pulse current sintering // J. Eur. Ceram. Soc. –2005. – 25. – P. 2735–2738.

121.Fujisawa M., Hata T., Kitagawa H., Bronsveld P., Suzuki Y., Hasezaki K., Noda Y., Imamura Y. Thermoelectric properties of porous SiC/C composites // Renewable Energy. – 2008. – 33. –

P.309–313.

122.Wei Wei, Jia-wei Li, Hong-tao Zhang, Xiao-ming Cao, Chong Tiana, Jin-song Zhanga. Macrostructural inÁuence on the thermoelectric properties of SiC ceramics // Scripta Materialia. – 2007. – 57. – P. 1081–1084.

123.Wei Wei, Xiao-ming Cao, Chong Tian, Jin-song Zhang. The inÁuence of Si distribution and content on the thermoelectric properties of SiC foam ceramics // Microporous and Mesoporous Materials. – 2008.

124.Koumoto K., Shimohigoshi M., Takeda S., Yanagida H. Thermoelectric energy conversion by porous SiC ceramics // J. Mater. Sci. Lett. – 1987. – 6. – P. 1453–1455.

125.Bitterlich B., Bitsch S., Friederich K. SiAlON based ceramic cutting tools // J. Eur. Ceram. Soc. – 2008. – 28. – P. 989–994.

126.Krenkel W., Berndt F. C/C–SiC composites for space applications and advanced friction systems // Mat. Sci. Eng. – 2005. –

A412. – P. 177–181.

127.Krenkel W., Berndt F. C/C–SiC composites for space applications and advanced friction systems // Mat. Sci. Eng. – 2005. –

A412. – P. 177–181.

128.Hald H., Weihs H., Reimer T. Proceedings of the 53rd International Astronautical Congress, October 10–19, Houston (Texas, USA), 2002.

294 ǮȑȓȓȐ Ǽ.Ǯ., ǯȓșȭȓȐ Ǯ.dz., ǯȜșȠȜȐȓȤ ǻ.ǿ., ǸȖȟȓșȓȐ ǰ.ǿ., ǸȜțȎȘȜȐȎ Ǿ.ǰ. Ȗ ȒȞ

129.Murthy P.N., Nemeth N.N., Brewer DN., Mital S. Probabilistic analysis of a SiC/SiC ceramic matrix composite turbine vane // Composites. – 2008. – B 39(4). – P. 694–703.

130.Vogt U., Herzog A., Graule T., L. Györfy, Plesch G. Macroporous silicon carbide foams for high temperature applications and catalyst supports // Empa Activities. – 2006. – P. 12

131.Okada A. Automotive and industrial applications of structural ceramics in Japan // J. Eur. Ceram. Soci. – 28. – P. 1097–1104.

132.http://www.technologiya.ru, http://www1.technologiya.ru

133.Katoh Y., Snead L.L., Henager C.H.,Jr., Hasegawa A., Kohyama A., Riccardi B., Hegeman H. Current status and critical issues for development of SiC composites for fusion applications // Journal of Nuclear Materials. – 2007. – 367–370. – P. 659–671.

134.http://fusionforenergy.europa.eu/

135.ǰȜȗȤȓțȭ ǰ.ǿ., ȆȓȝȓșȓȐ Ǯ.DZ., ǽȜțȜȚȎȞȓțȘȜ Ȁ.Ǯ. ǽȓȞȟȝȓȘȠȖȐȩ ȖȟȝȜșȪȕȜȐȎțȖȭ SiC/SiC-ȘȜȚȝȜȕȖȠȜȐ Ȑ ȠȓȞȚȜȭȒȓȞțȩȣ ȞȓȎȘȠȜȞȎȣ (ȝȜ ȎțȎșȖȕȡ ȚȓȔȒȡțȎȞȜȒțȩȣ ȏȎȕ ȒȎțțȩȣ INIS, MSCI, INSPEC) // ǰȜȝȞȜȟȩ ȎȠȜȚțȜȗ țȎȡȘȖ Ȗ ȠȓȣțȖȘȖ; cȓȞȖȭ: ȂȖȕȖȘȎ ȞȎȒȖȎȤȖȜțțȩȣ ȝȜȐȞȓȔȒȓțȖȗ Ȗ ȞȎȒȖȎȤȖȜțțȜȓ ȚȎȠȓȞȖȎșȜȐȓ-

ȒȓțȖȓ. – 2007. – Ɋ 2. – C. 160–163.

136.Minato K., Ogawa T., Kashimura S., Fukuda K., Shimizu M., Tayama Y., Takahashi I. Fission Product Palladium-Silicon Carbide Interaction in HTGR Fuel Particles // J. Nucl. Mat. – 1990. – 172. – P. 184–19.

137.IAEA – Viability of inert matrix fuel in redusing plutonium amounts in reactors IAEA, Vienna, 2006.

138.Snead L.L., Nozawa T., Katoh Y., Byun T.-S., Kondo S., Petti D. A. Handbook of SiC properties for fuel performance modeling // J. Nucl. Mat. – 2007. – 371. – P. 329–377.

139.Nozawa T., Hinoki T., Hasegawa A., Kohyama A., Katoh Y., Snead L.L., Henager C.H.,Jr., Hegeman J.B.J. Recent advances and issues in development of silicon carbide composites for fusion applications // J. Nucl. Mat. – 2009. – 386–388. – P. 622–627.

ȅȎȟȠȪ I, DZșȎȐȎ 9

295

 

 

140.Katoh Y., Kondo S., Snead L.L. DC electrical conductivity of silicon carbide ceramics and composites for Áow channel insert applications // J. Nucl. Mat. – 2009. – 386–388. – P. 639–642.

141.Voice E.H. Silicon carbide as a Àssion product in nuclear fuels. Proceedings of the Int. Conf. On silicon carbide, University Park, Pennsylvania, Oct. 20–23, 1968. Published as a special issue of the Materials Research Bulletin. – 1969. – 4. – P. S1-371.

142.http://en.wikipedia.org/wiki/Generation IV reactor

143.IAEA-TECDOC-1516, Viability of inert matrix fuel in reducing plutonium amounts in reactors. // Internatinal Atomic Energy Agency, August, 2006.

144.ǮșȓȘȟȓȓȐ ǰ.Ǯ. ȖȒȞ. ǶȟȟșȓȒȜȐȎțȖȓ ȘȜțȟȠȞȡȘȤȖȗ ȕȓȞȘȎș ȖȕȘȎȞȏȖȒȎ ȘȞȓȚțȖȭ // ǼȝȠȖȘȜ-ȚȓȣȎțȖȥȓȟȘȎȭ ȝȞȜȚȩȦșȓțțȜȟȠȪ. – 1990. – Ɋ7. – C. 8–12.

145.Goela J.S., Taylor R.L. Chemical Vapor Deposition for Silicon Cladding on Advanced Ceramics // J. Am. Ceram. Soc. – 1989. – 72. – P. 1747–1750.

146.Goela J.S., Taylor R.L. Rapid Fabrication of Lightweight Ceramic Mirrors by Chemical Vapor Deposition // Appl. Phys. Lett. – 1989. – 54, N25, – P. 2512 2514.

147.Goela J.S., Taylor R.L. Fabrication of Lightweight Ceramic Mirrors by Means of a Chemical Vapor Deposition Process, US Patent No.:5,071,596, Dec.10, 1991.

148.Wakugawa J., Gresko L.S., Brown K.M. Lightweight silicon carbide mirror, US Patent No 4,856,887, Aug15, 1989.

149.www.coorstek.com

150.Matsumoto T. Infrared imaging surveyor: IRIS // Space Science Rev. – 1995. – 74, N1–2. – P. 113–117.

151.Swinyard B., Nakagawa. The space infrared telescope for cosmology and astrophysics: SPICA a joint mission between JAXA Japan Aerospace Exploratin Agency and ESA Eropean Space Agency // Exp.Astron. – 2009. – 23. – P. 193–219.

296 ǮȑȓȓȐ Ǽ.Ǯ., ǯȓșȭȓȐ Ǯ.dz., ǯȜșȠȜȐȓȤ ǻ.ǿ., ǸȖȟȓșȓȐ ǰ.ǿ., ǸȜțȎȘȜȐȎ Ǿ.ǰ. Ȗ ȒȞ

152.Mondello G., Novi A., Devilliers C. Development of sinteredSiC and C/SiC mirrors for cryogenic telescope. // Proc. SPIE, – 2004. – 5494:311.

153.Ozakia T. et al. Mechanical and thermal performance of C/ SiC composites for SPICA mirror. // Proc. SPIE, – 2005. – 5868:58680H–1.

154.Amon M., Winkler S., Dekker A., Bolz A., Mittermayer C., Schaldach M. Introduction of a new coronary stent with enhanced radiopacity and hemocompatibility. Proceedings of the Annual International Conference of the IEEE Engineers in Medicine and Biology Society 95CB35746. – New York: IEEE Press, 1995. – 17 (1). – P. 107–108.

155.Amon M., Bolz A., Schaldach M. Improvement of stenting therapy with a silicon carbide coated tantalum stent // J Mat. Sci: Mat. Med. – 1996. – 7 (5). – P. 273–278.

156.Bolz A., Amon M., Ozbek C., Heublein B., Schaldach M. Coating Cardiovascular Stents with a Semiconductor to Improve Their Hemocompatibility // Texas Heart Institute Jornal. – 1996. – 23. – P. 162–166.

157.Monnink S., Boven A. van, Peels H., Tigchelaar I., Kam P. de, Crijns H., Oeveren W.van. Silicon carbide coated coronarystents have low platelet and leukocyte adhesion during platelet activation // J. Invest. Med. – 1999. – 47. – P. 304 –310.

158.Kalnins U., Erglis A., Dinne I., Kumsars I., Jegere S. Clinical outcomes of silicon carbide coated stents in patients with coronary artery disease // Med. Sci. Monit. – 2002. – 8. – P. PI16–PI20.

159.Aspenberg P., Anttila A., Konttinen Y.T., Lappalainen R., Goodman S., Nordsletten L., Santavirta S. Benign response to particles of diamond and SiC: bone chamber studies of new joint replacement coating materials in rabbits // Biomaterials. – 1996. – 17. – P. 807–812.

160.Santavirta S., Takagi M., Nordsletten L., Anttila A., Lappalainen R., Konttinen Y.T. Biocompatibility of silicon carbide in colony formation test in vitro. A promising new ceramic THR implant coating material // Arch. Orthop. Trauma Surg. – 1998. – 118. – P. 89–91.

ȅȎȟȠȪ I, DZșȎȐȎ 9

297

 

 

161.Allen M., Butter R., Chandra L., Lettington A., Rushton N. Toxicity of particulate silicon carbide for macrophages, broblasts and osteoblast-like cells in vitro // Biomed. Mat. Eng. – 1995. – 5. – P. 151–159.

162.Nordsletten L., Hogasen A., Konttinen Y., Santavirta S., Aspenberg P., Aasen A. Human monocytes stimulation by particles of hydroxyapatite, silicon carbide, and diamond: in vitro studies of new prosthesis coatings // Biomaterials. – 1996. 17. – P. 1521–1527.

163.Tsuge K., Hattori M., Kondo K., Shibata Y. SiC based artiÀcial dental implant, US Patent No.: 5,062,798, Nov. 5, 1991.

164.Gonzaleza P., Serra J., Liste S., Chiussi S., Leon B., PerezAmor M., Martinez-Fernandez J., Arellano-Lopez A.R.de, VarelaFeria F.M. New biomorphic SiC ceramics coated with bioactive glass for biomedical applications // Biomaterials. – 2003. – 24. – P. 4827–4832.

165.Gonzalez P., Borrajo J.P., Serra J., Chiussi S., Leon B., Marti- nez-Fernandez J., Varela-Feria F.M., Arellano-Lopez A.R.de, Carlos A.de, Munoz F.M., Lopez M., Singh M. A new generation

of bio-derived ceramic materials for medical applications //

J.Biomed. Mat. Res. – 2009. – 88A. – P. 807–813.

166.Neudeck P.G. SiC tecnology. NASA Lewis Research Center, 1998.

167.Kotzar G., Freas M., Abel P., Fleischman A., Roy S., Zorman C., Moran J., Melzak J. Evaluation of MEMS materials of construction for implantable medical devices // Biomaterials. – 2002. – 23. – P. 2737–2750.

168.Mehregany M., Zorman C., Narayanan N. aC.H.Wu, Silicon Carbide MEMS for Harsh Environments // Proc. IEEE, – 1998. –

P.1594 1609

169.Sarro Pasqualina M. Silicon carbide as a new MEMS technology // Sensors and Actuators A: Physical. – 2000. – 82, Issues 1–3. –

P.210–218.

298 ǮȑȓȓȐ Ǽ.Ǯ., ǯȓșȭȓȐ Ǯ.dz., ǯȜșȠȜȐȓȤ ǻ.ǿ., ǸȖȟȓșȓȐ ǰ.ǿ., ǸȜțȎȘȜȐȎ Ǿ.ǰ. Ȗ ȒȞ

170.Rosenbloom A.J., Shishkin Y., Sipe D.M., Ke Y., Devaty R.P., Choyke W.J. Porous Silicon Carbide as a Membrane for Implantable Biosensors // Mat. Sci. Forum – 2004. – 457–460. – P. 1463–1466.

171.Godignon P. SiC Materials and Technologies for Sensors Development // Mat. Sci. Forum. – 2005. – 483–485. – P. 1009–1014.

172.Gabriel G., Erill I., Caro J., Gómez R., Riera D., Villa R., Godignon P. Manufacturing and full characterization of silicon carbidebased multi-sensor micro-probes for biomedical applications // Microelectron. J. – 2007. – 38, Issue 3. – P. 406–415.

173.Yakimova R., Steinhoff G., Petoral R.M.,Jr., Vahlberg C., Khranovskyy V., Yazdi G.R., Uvdal K., Lloyd Spetz A. Novel material concepts of transducers for chemical and biosensors // Biosensors and Bioelectronics. – 2007. – 22. – P. 2780–2785.

174.Petoral R.M.,Jr., Yazdi G.R., Vahlberg C., Syvajarvi M., Lloyd Spetz A., Uvdal K., Yakimova R. Surface Functionalization of SiC for Biosensor Applications // Mat. Sci. Forum. – 2007. – 556–557. – P. 957–960.

ȅǮǿȀȊ II ȀdzǾǺǶȅdzǿǸǼdz

Ƕ ȂǼȀǼǻǻǼǿȀǶǺȁǹǶǾǼǰǮǻǻǼdz ǼǸǶǿǹdzǻǶdz SiC

2.1. ǰȕȎȖȚȜȒȓȗȟȠȐȖȓ ȟȐȓȠȜȐȩȣ ȝȜȠȜȘȜȐ ȟȜ ȟȠȞȡȘȠȡȞȎȚȖ SiO2–ȝȜșȡȝȞȜȐȜȒțȖȘ, ȚȓȠȎșș–SiO2ȝȜșȡȝȞȜȐȜȒțȖȘ

ǵȎȝȜȟșȓȒțȖȓ ȑȜȒȩțȎȘȜȝșȓț ȏȜșȪȦȜȗȜȝȩȠȝȜȝȞȖȚȓțȓțȖȬ ȘȜȑȓȞȓțȠțȩȣ(șȎȕȓȞțȩȣ) ȖțȓȘȜȑȓȞȓțȠțȩȣȖȟȠȜȥțȖȘȜȐȖȕșȡȥȓțȖȭȐȠȓȣțȜșȜȑȖȖ ȝȜșȡȝȞȜȐȜȒțȖȘȜȐȩȣ ȝȞȖȏȜȞȜȐ Ȗ ȖțȠȓȑȞȎșȪțȩȣ ȟȣȓȚ [1–8]. ǼȟȜȏȓțțȜȟȠȪȬ ȫȠȖȣȠȓȣțȜșȜȑȖȥȓȟȘȖȣ ȝȞȜȤȓȟȟȜȐȜȏȞȎȏȜȠȘȖȭȐșȭȓȠȟȭ țȓȜȏȣȜȒȖȚȜȟȠȪ ȡȥȓȠȎ ȜȝȠȖȥȓȟȘȖȣ ȣȎȞȎȘȠȓȞȖȟȠȖȘ ȜȏȞȎȏȎȠȩȐȎȓȚȜȑȜ ȝȜșȡȝȞȜȐȜȒțȖȘȎ, ȐȎȔțȓȗȦȖȚȖȖȕȘȜȠȜȞȩȣȭȐșȭȬȠȟȭȘȜȫȢȢȖȤȖȓțȠ ȜȠȞȎȔȓțȖȭȖȝȜȑșȜȧȓțȖȭ. ǶȟȟșȓȒȜȐȎțȖȓ ȝȞȜȤȓȟȟȜȐȏȩȟȠȞȜȗȠȓȞȚȖȥȓȟȘȜȗȜȏȞȎȏȜȠȘȖ(ǯȀǼ) ȘȞȓȚțȖȓȐȩȣȖȘȎȞȏȖȒȘȞȓȚțȖȓȐȩȣȟȠȞȡȘȠȡȞ

ȟȡȥȓȠȜȚȠȓȚȝȓȞȎȠȡȞțȜȗȕȎȐȖȟȖȚȜȟȠȖȖțȠȓȑȞȎșȪțȜȑȜȘȜȫȢȢȖȤȖȓțȠȎ ȝȜȑșȜȧȓțȖȭ ȝȞȖ ȜȠȔȖȑȓ șȓȑȖȞȜȐȎțțȩȣ ȟșȜȓȐ, ȘȜțȠȎȘȠțȜ-ȚȓȠȎșȖ- ȕȎȤȖȜțțȜȗ ȟȖȟȠȓȚȩ ȝȞȜȐȓȒȓțȜ Ȑ ȞȎȏȜȠȎȣ [3–5, 9, 10]. ǽȜȘȎȕȎțȜ, ȥȠȜ țȎ ȞȓȕȡșȪȠȎȠȩ ȖȟȟșȓȒȜȐȎțȖȗ ȟȡȧȓȟȠȐȓțțȜȓ ȐșȖȭțȖȓ ȜȘȎȕȩȐȎȓȠ țȓ ȠȜșȪȘȜ ȡȒȓșȪțȎȭ ȚȜȧțȜȟȠȪ, țȜ Ȗ ȟȝȓȘȠȞ ȖȟȠȜȥțȖȘȎ ȖȕșȡȥȓțȖȭ.

ǽȞȖ ǯȀǼ ȝșȓțȜȘ ȒȐȡȜȘȖȟȖ ȘȞȓȚțȖȭ țȎ ȘȞȓȚțȖȖ ȟȐȓȠ Ȑ ȒȖȫșȓȘȠȞȖȘȓ ȝȞȎȘȠȖȥȓȟȘȖ țȓ ȝȜȑșȜȧȎȓȠȟȭ. ǼȟțȜȐțȜȓ ȝȜȑșȜȧȓțȖȓ ȝȞȜȖȟȣȜȒȖȠ Ȑ ȝȜșȡȝȞȜȐȜȒțȖȘȓ [11–13]. DZȞȎțȖȤȎ ȞȎȕȒȓșȎ ȐȚȓȟȠȓ

ȟȝȜȐȓȞȣțȜȟȠȪȬ ȒȖȫșȓȘȠȞȖȘȎ ȜȝȞȓȒȓșȭȓȠ ȒȜșȬ ȜȠȞȎȔȓțțȜȑȜ ȖȕșȡȥȓțȖȭ, ȘȜȠȜȞȜȓ ȕȎȐȖȟȖȠ, Ȑ ȥȎȟȠțȜȟȠȖ, ȜȠ ȠȜșȧȖțȩ ȝșȓțȘȖ ȒȐȡȜȘȖȟȖ ȘȞȓȚțȖȭ. ǰȫȠȜȚȟșȡȥȎȓȣȎȞȎȘȠȓȞȖȟȠȖȘȖȝȞȜȦȓȒȦȓȑȜȥȓȞȓȕȒȖȫșȓȘȠȞȖȘȟȐȓȠȜȐȜȑȜȝȜȠȜȘȎȠȎȘȔȓȕȎȐȖȟȭȠȜȠȠȜșȧȖțȩȝșȓțȘȖ. ǽȜȟȘȜșȪȘȡ ȝȞȜȝȡȟȘțȎȭ ȟȝȜȟȜȏțȜȟȠȪ ȟșȜȭ ȠȜșȧȖțȜȗ d ȜȝȞȓȒȓșȭȓȠȟȭ ȕȎȘȜțȜȚ

ǯȡȑȓȞȎ-ǹȎȚȏȓȞȠȎ, ȠȜ ȐȓșȖȥȖțȎ ȝȜȑșȜȧȓțțȜȑȜ ȖȕșȡȥȓțȖȭ PT ȚȜȔȓȠ ȏȩȠȪ ȜȝȞȓȒȓșȓțȎ Ȗȕ ȐȩȞȎȔȓțȖȭ [11]

 

 

 

 

R2

+ R2

+ 2R R cos(2Q%/ M)

¯

 

 

P

= P

¡1

 

1

2

1 2

°

,

(2.1)

 

 

 

T

0

¡

 

 

 

 

°

 

 

 

 

¡

1 + (R R )2 + 2R R cos(2Q%/ M)°

 

 

 

 

¢

 

 

1 2

1 2

±

 

 

300 ǮȑȓȓȐ Ǽ.Ǯ., ǯȓșȭȓȐ Ǯ.dz., ǯȜșȠȜȐȓȤ ǻ.ǿ., ǸȖȟȓșȓȐ ǰ.ǿ., ǸȜțȎȘȜȐȎ Ǿ.ǰ. Ȗ ȒȞ.

ǾȖȟ. 2.1. ǿȝȓȘȠȞȎșȪțȎȭȕȎȐȖȟȖȚȜȟȠȪ ȘȜȫȢȢȖȤȖȓțȠȜȐ ȝȜȑșȜȧȓțȖȭ (ǂ), ȜȠȞȎȔȓțȖȭ(R) ȖȝȞȜȝȡȟȘȎțȖȭ (T) SiO2: 1 – ȝȜȑșȜȧȓțȖȭ; 2 – ȝȞȜȝȡȟȘȎțȖȭ; 3 – ȜȠȞȎȔȓțȖȭ. ǸȞȖȐȩȓ 1, 3 ȝȜȟȠȞȜȓțȩ ȝȜ ȒȎțțȩȚ [18], ȘȞȖȐȎȭ 2 – ȝȜ ȒȎț-

țȩȚ [14]

ȑȒȓ R1 Ȗ R2 – ȘȜȫȢȢȖȤȖȓțȠȩ ȜȠȞȎȔȓțȖȭ ȜȠ ȑȞȎțȖȤ SiO2 –ȝȜșȡȝȞȜ- ȐȜȒțȖȘ Ȗ SiO2 – ȐȜȕȒȡȣ ȟȜȜȠȐȓȠȟȠȐȓțțȜ, %= 2nd1cos K ï ȞȎȕțȜȟȠȪ ȣȜȒȎșȡȥȓȗ; n – ȝȜȘȎȕȎȠȓșȪȝȞȓșȜȚșȓțȖȭȜȘȟȖȒțȜȗȝșȓțȘȖ, K – ȡȑȜș ȝȎȒȓțȖȭ șȡȥȎ Ȗ d1 – ȠȜșȧȖțȎ ȜȘȖȟșȎ, Po – ȐȓșȖȥȖțȎ ȝȎȒȎȬȧȓȑȜ ȖȕșȡȥȓțȖȭ.

ǿȝȓȘȠȞȎșȪțȩȓ ȣȎȞȎȘȠȓȞȖȟȠȖȘȖ ȝșȓțȜȘȒȐȡȜȘȖȟȖȘȞȓȚțȖȭȝȞȖȐȓȒȓțȩ țȎ ȞȖȟ. 2.1. ǸȎȘ ȐȖȒțȜ Ȗȕ ȞȖȟ. 2.1, șȜȘȎșȪțȜȓ ȝȜȑșȜȧȓțȖȓ ȒșȭSiO2 țȎȏșȬȒȎȓȠȟȭȐȘȜȞȜȠȘȜȐȜșțȜȐȜȗȖȒșȖțțȜȐȜșțȜȐȜȗȜȏșȎȟȠȖ ȖȕșȡȥȓțȖȭ. ǽȜȫȠȜȚȡ ȝȞȖ ȜȏȞȎȏȜȠȘȓ ȝȜșȡȝȞȜȐȜȒțȖȘȜȐȩȣ ȟȠȞȡȘȠȡȞ, ȟȜȒȓȞȔȎȧȖȣ șȜȘȎșȪțȩȓ ȒȖȫșȓȘȠȞȖȥȓȟȘȖȓ ȝșȓțȘȖ țȎ ȝȜȐȓȞȣțȜȟȠȖ ȝșȎȟȠȖț, țȓȜȏȣȜȒȖȚȜ ȡȥȖȠȩȐȎȠȪ ȟșȜȔțȩȗ ȣȎȞȎȘȠȓȞ ȝȜȑșȜȧȓțȖȭ, ȝȞȜȝȡȟȘȎțȖȭ Ȗ ȜȠȞȎȔȓțȖȭ ȝșȓțȜȘ ȒȐȡȜȘȖȟȖ ȘȞȓȚțȖȭ.

ǻȎ ȞȖȟ. 2.2 ȝȜȘȎȕȎțȎ ȕȎȐȖȟȖȚȜȟȠȪ ȘȜȫȢȢȖȤȖȓțȠȎ ȝȞȜȝȡȟȘȎțȖȭ ȟȠȞȡȘȠȡȞȩ SiO2-Si ȜȠ ȜȠțȜȦȓțȖȭ ȠȜșȧȖțȩ SiO2 Ș ȒșȖțȓ ȐȜșțȩ. ǽȎȞȎȚȓȠȞȩ Ȓșȭ ȞȎȟȥȓȠȎ ȐȓșȖȥȖțȩ d1/M ȏȩșȖ ȐȩȏȞȎțȩ ȟȜȑșȎȟ-

ǾȖȟ. 2.2. ǵȎȐȖȟȖȚȜȟȠȪ ȘȜȫȢȢȖȤȖȓțȠȎȝȞȜȝȡȟȘȎțȖȭSiO2 ȜȠ ȜȠțȜȦȓțȖȭ d1/M [19]

ȅȎȟȠȪ II

301

 

 

ǾȖȟ. 2.3. ǵȎȐȖȟȖȚȜȟȠȪ ȝȞȖȐȓȒȓțțȜȑȜȖțȠȓȑȞȎșȪțȜȑȜ ȘȜȫȢȢȖȤȖȓțȠȎ ȝȞȜȝȡȟȘȎțȖȭ ȟȠȞȡȘȠȡȞȩ SiO2–Si ȜȠ ȠȜșȧȖțȩ ȟșȜȭ ȒȖȜȘȟȖȒȎȝȞȖȜȏșȡȥȓțȖȖȟ șȖȤȓȐȜȗ ȟȠȜȞȜțȩ ȟȠȞȡȘȠȡȞȩ [19]

țȜ [14]: n1 = 1.45; R1 = 0.443 Ȗ R2 = 0.185. ǾȓȕȡșȪȠȎȠȩ, ȝȞȖȐȓȒȓțțȩȓ țȎ ȞȖȟ. 2.2, ȝȜȘȎȕȩȐȎȬȠ, ȥȠȜ ȝșȓțȘȎ ȒȖȫșȓȘȠȞȖȘȎ ȝȞȖ ǯȀǼ ȚȜȔȓȠ ȟșȡȔȖȠȪ ȝȞȜȟȐȓȠșȭȬȧȖȚ ȝȜȘȞȩȠȖȓȚ. ǿșȓȒȜȐȎȠȓșȪțȜ, ȡȥȎȟȠȘȖ ȝȜșȡȝȞȜȐȜȒțȖȘȎ ȟ ȞȎȕțȜȗ ȠȜșȧȖțȜȗ ȝșȓțȘȖ ȒȖȫșȓȘȠȞȖȘȎ ȏȡȒȡȠ ȜȠȔȖȑȎȠȪȟȭ ȝȜ-ȞȎȕțȜȚȡ. ǼȟȜȏȓțțȜ ȫȠȜȠ ȫȢȢȓȘȠ ȏȡȒȓȠ ȕȎȚȓȠȓț ȝȞȖ țȓȏȜșȪȦȖȣ ȒșȖȠȓșȪțȜȟȠȭȣ ȜȏșȡȥȓțȖȭ. ȋȠȖ ȜȟȜȏȓțțȜȟȠȖ ȝȜȑșȜȧȓțȖȭ Ȗ ȝȞȜȝȡȟȘȎțȖȭ ȝșȓțȜȘ SiO2 țȓȜȏȣȜȒȖȚȜ ȡȥȖȠȩȐȎȠȪ ȝȞȖ ȐȩȏȜȞȓ ȜȝȠȖȚȎșȪțȩȣ ȞȓȔȖȚȜȐ ȜȏȞȎȏȜȠȘȖ ȝȜșȡȝȞȜȐȜȒțȖȘȜȐȩȣ ȟȠȞȡȘȠȡȞ, ȖȟȝȜșȪȕȡȓȚȩȣ Ȓșȭ ȖțȠȓȑȞȎșȪțȩȣ ȟȣȓȚ [14–17].

ǽȜȟȘȜșȪȘȡ ȝȞȖ ǯȀǼ ȝȜșȡȝȞȜȐȜȒțȖȘȜȐȩȣ ȟȠȞȡȘȠȡȞ Ȑ ȕȎȐȖȟȖȚȜȟȠȖ ȜȠ ȠȖȝȎ ȖȟȠȜȥțȖȘȎ ȖȕșȡȥȓțȖȭ ȖȟȝȜșȪȕȡȓȠȟȭ ȒȖȎȝȎȕȜț ȒșȖț ȐȜșț ȜȠ ȐȎȘȡȡȚțȜȑȜ ȡșȪȠȞȎȢȖȜșȓȠȎ ȒȜ ȒȎșȪțȓȑȜ ǶǸ-ȖȕșȡȥȓțȖȭ, ȠȜ

ȐȞȓȎșȪțȩȣȟȠȞȡȘȠȡȞȎȣǸǺǼǽǯǶǿȝȞȖȖȟȝȜșȪȕȡȓȚȩȣȝșȓțȘȎȣ SiO2 ȠȜșȧȖțȜȗ0.05–1.0 ȚȘȚțȓȜȏȣȜȒȖȚȜȡȥȖȠȩȐȎȠȪȜȝȠȖȥȓȟȘȖȓȣȎȞȎȘȠȓ-

ȞȖȟȠȖȘȖȝșȓțȜȘSiO2 ȖȖȣȐșȖȭțȖȓțȎȞȎȟȝȞȓȒȓșȓțȖȓȠȓȚȝȓȞȎȠȡȞțȩȣ ȝȜșȓȗ Ȑ ȟȠȞȡȘȠȡȞȎȣ.

ǻȎ ȞȖȟ. 2.3 Ȗ 2.4 ȝȜȘȎȕȎțȜ ȖȕȚȓțȓțȖȓ ȝȞȖȐȓȒȓțțȩȣ ȘȜȫȢȢȖ-

ȤȖȓțȠȜȐ ȝȞȜȝȡȟȘȎțȖȭ Ȗ ȜȠȞȎȔȓțȖȭ ȟȠȞȡȘȠȡȞȩ SiO2–Si ȜȠ ȠȜșȧȖțȩ ȟșȜȭ SiO2, ȞȎȟȟȥȖȠȎțțȩȣ ȟȜȑșȎȟțȜ [19]. ȃȜȒ ȘȞȖȐȩȣ ȝȜȘȎȕȩȐȎȓȠ, ȥȠȜ

ȐȕȎȐȖȟȖȚȜȟȠȖȜȠȠȜșȧȖțȩSiO2 ȘȜȫȢȢȖȤȖȓțȠȩȜȠȞȎȔȓțȖȭȖȝȞȜȝȡȟȘȎțȖȭ ȚȜȑȡȠ ȡȐȓșȖȥȖȐȎȠȪȟȭ ȖșȖ ȡȚȓțȪȦȎȠȪȟȭ ȝȞȖ ȘȞȎȠțȜȟȠȖ ȠȜșȧȖțȩ ȝșȓțȘȖ M/4 ȖșȖ M/2. ȋȠȜȠ ȫȢȢȓȘȠ ȜȟȜȏȓțțȜ ȕȎȚȓȠȓț Ȑ ȟșȡȥȎȓ ȠȜțȘȖȣȜȘȟȖȒțȩȣȝșȓțȜȘȖȦȖȞȜȘȜȖȟȝȜșȪȕȡȓȠȟȭȐȜȝȠȜȫșȓȘȠȞȜțȖȘȓ Ȗ ȟȜșțȓȥțȜȗ ȫțȓȞȑȓȠȖȘȓ [20, 22].

ǮțȎșȜȑȖȥțȩȓȕȎȐȖȟȖȚȜȟȠȖțȎȏșȬȒȎȬȠȟȭȖȒșȭȘȎȞȏȖȒȎȘȞȓȚțȖȭ

ȟȝșȓțȘȜȗ SiO2. ǻȎ ȞȖȟ. 2.5. ȝȜȘȎȕȎțȎ ȕȎȐȖȟȖȚȜȟȠȪ ȖțȠȓȑȞȎșȪțȜȑȜ

302 ǮȑȓȓȐ Ǽ.Ǯ., ǯȓșȭȓȐ Ǯ.dz., ǯȜșȠȜȐȓȤ ǻ.ǿ., ǸȖȟȓșȓȐ ǰ.ǿ., ǸȜțȎȘȜȐȎ Ǿ.ǰ. Ȗ ȒȞ.

ǾȖȟ. 2.4. ǵȎȐȖȟȖȚȜȟȠȪȝȞȖȐȓȒȓțțȜȑȜȖțȠȓȑȞȎșȪțȜȑȜȘȜȫȢȢȖȤȖȓțȠȎ ȜȠȞȎȔȓțȖȭ ȑȞȎțȖȤȩ ȞȎȕȒȓșȎ

SiO2–Si ȜȠ ȠȜșȧȖțȩ SiO2 [19]

ȘȜȫȢȢȖȤȖȓțȠȎ ȜȠȞȎȔȓțȖȭ ȟȠȞȡȘȠȡȞȩ SiO2–SiC ȜȠ ȠȜșȧȖțȩ SiO2, ȝȜșȡȥȓțțȎȭ ȟ ȡȥȓȠȜȚ ȜȝȠȖȥȓȟȘȖȣ ȣȎȞȎȘȠȓȞȖȟȠȖȘ SiC [21].

ǼȒțȜȞȜȒțȜȟȠȪ ȞȎȟȝȞȓȒȓșȓțȖȭ ȠȓȚȝȓȞȎȠȡȞȩ ȝȜ ȝȜȐȓȞȣțȜȟȠȖ ȝșȎȟȠȖț Ȑ ȝȞȜȤȓȟȟȓ ȖȚȝȡșȪȟțȜȗ ȜȏȞȎȏȜȠȘȖ ȭȐșȭȓȠȟȭ ȐȎȔțȓȗȦȖȚ ȢȎȘȠȜȞȜȚ ȤȓșȓȟȜȜȏȞȎȕțȜȟȠȖ ȖȟȝȜșȪȕȜȐȎțȖȭ ȏȩȟȠȞȜȗ ȠȓȞȚȖȥȓȟȘȜȗ ȜȏȞȎȏȜȠȘȖ Ȑ ȠȓȣțȜșȜȑȖȖ ȖȕȑȜȠȜȐșȓțȖȭ ǶǺǿ. ǰ ȡȟȠȎțȜȐȘȎȣ ǯȀǼ ȫȠȜ ȒȜȟȠȖȑȎȓȠȟȭ ȕȎ ȟȥȓȠ ȟȜȐȓȞȦȓțȟȠȐȜȐȎțȖȭ ȘȜțȟȠȞȡȘȤȖȖ țȎȑȞȓȐȎȠȓșȪțȜȗ ȘȎȚȓȞȩ. ǼȒțȎȘȜ, ȒȎȔȓ Ȑ ȟșȡȥȎȓ ȜȒțȜȞȜȒțȜȑȜ ȜȏșȡȥȓțȖȭ ȝȜȐȓȞȣțȜȟȠȖ ȝșȎȟȠȖț ȟȐȓȠȜȐȩȚȖȝȜȠȜȘȎȚȖ, Ȗȕ-ȕȎșȜȘȎșȪțȩȣ ȜȏșȎȟȠȓȗ, ȜȏșȎȒȎȬȧȖȣ ȞȎȕșȖȥțȩȚȖ ȜȝȠȖȥȓȟȘȖȚȖ Ȗ ȠȓȝșȜȢȖȕȖȥȓȟȘȖȚȖ ȣȎȞȎȘȠȓȞȖȟȠȖȘȎȚȖ, Ȑ ȝșȎȟȠȖțȓ ȚȜȑȡȠ ȐȜȕțȖȘȎȠȪ ȕțȎȥȖȠȓșȪțȩȓ ȠȓȚȝȓȞȎȠȡȞțȩȓ ȑȞȎȒȖȓțȠȩ, ȘȜȠȜȞȩȓ Ȑ ȟȐȜȬ ȜȥȓȞȓȒȪ ȐȩȕȩȐȎȬȠ ȖȕȏȩȠȜȥțȩȓ ȚȓȣȎțȖȥȓȟȘȖȓ țȎȝȞȭȔȓțȖȭ. ǾȓșȎȘȟȎȤȖȭ ȚȓȣȎțȖȥȓȟȘȖȣ țȎȝȞȭȔȓțȖȗȚȜȔȓȠȝȞȖȐȓȟȠȖȘȜȏȞȎȕȜȐȎțȖȬșȖțȓȗțȩȣȖȠȜȥȓȥțȩȣ

ǾȖȟ. 2.5. ǵȎȐȖȟȖȚȜȟȠȪ ȖțȠȓȑȞȎșȪțȜȑȜȘȜȫȢȢȖȤȖȓțȠȎȜȠȞȎȔȓ- țȖȭȟȠȞȡȘȠȡȞȩSiO2–SiC ȜȠȠȜșȧȖ-

țȩ SiO2 [21]

ȅȎȟȠȪ II

303

 

 

ȒȓȢȓȘȠȜȐ [23–25]. dzȟșȖ ȘȜțȤȓțȠȞȎȤȖȬ ȠȜȥȓȥțȩȣ ȒȓȢȓȘȠȜȐ ȚȜȔțȜ ȝȞȖȜȝȞȓȒȓșȓțțȩȣȡȟșȜȐȖȭȣȟțȖȕȖȠȪ, ȠȜșȖțȓȗțȩȓȒȓȢȓȘȠȩ, ȐȥȎȟȠțȜȟȠȖ ȒȖȟșȜȘȎȤȖȖ, ȜȏșȎȒȎȬȠ ȐȩȟȜȘȜȗ ȡȟȠȜȗȥȖȐȜȟȠȪȬ. ǰ ȞȓȕȡșȪȠȎȠȓ ȫȠȜ ȚȜȔȓȠ ȜȘȎȕȎȠȪ ȟȡȧȓȟȠȐȓțțȜȓ ȐșȖȭțȖȓ țȎ ȝȎȞȎȚȓȠȞȩ Ȗ ȐȩȣȜȒ ȑȜȒțȩȣ ǶǺǿ. ǽȜȫȠȜȚȡ ȝȞȖ ȖȟȝȜșȪȕȜȐȎțȖȖ ǯȀǼ Ȑ ȠȓȣțȜșȜȑȖȖ ȖȕȑȜȠȜȐșȓțȖȭ ǶǺǿ țȓȜȏȣȜȒȖȚȜ ȜȟȡȧȓȟȠȐșȭȠȪ ȠȧȎȠȓșȪțȩȗ ȘȜțȠȞȜșȪ Ȗ ȐȩȏȜȞ ȞȓȔȖȚȜȐ ȜȏȞȎȏȜȠȘȖ, țȓ ȒȜȝȡȟȘȎȬȧȖȣ ȜȏȞȎȕȜȐȎțȖȭ ȒȖȟșȜ-

ȘȎȤȖȗ [26, 27].

ǽȞȖ ȒșȖȠȓșȪțȜȟȠȖ ȠȓȞȚȜȜȏȞȎȏȜȠȘȖ 101 102 ȟ ȞȓȎșȖȕȡȓȠȟȭ ȞȓȔȖȚ ȠȓȝșȜȐȜȑȜ ȏȎșȎțȟȎ. ǰ ȫȠȜȚ ȟșȡȥȎȓ ȚȜȔțȜ ȝȞȓțȓȏȞȓȥȪ ȑȞȎȒȖȓțȠȜȚ ȠȓȚȝȓȞȎȠȡȞȩ ȝȜ ȠȜșȧȖțȓ ȝșȎȟȠȖțȩ [3, 5]. ǸȞȜȚȓ ȠȜȑȜ, ȞȎȕȚȓȞȩ ȜȏșȎȟȠȓȗ ȟ ȞȎȕșȖȥțȩȚȖ ȜȝȠȖȥȓȟȘȖȚȖ Ȗ ȠȓȝșȜȢȖȕȖȥȓȟȘȖȚȖ ȣȎȞȎȘȠȓȞȖȟȠȖȘȎȚȖ Ȑ ȞȓȎșȪțȩȣ ȟȠȞȡȘȠȡȞȎȣ ȕțȎȥȖȠȓșȪțȜ ȚȓțȪȦȓ ȒșȖțȩ ȠȓȝșȜȐȜȗ ȒȖȢȢȡȕȖȖ. ȋȠȜ ȝȜȕȐȜșȭȓȠ ȐȩȒȓșȖȠȪ ȚȎȘȞȜȜȏșȎȟȠȖ ȟ ȡȟȞȓȒțȓțțȩȚȖ ȜȝȠȖȥȓȟȘȖȚȖ ȝȎȞȎȚȓȠȞȎȚȖ. ȀȜȑȒȎ ȠȜȝȜșȜȑȖȬ ȚȜȔțȜ ȝȞȓȒȟȠȎȐȖȠȪȐ ȐȖȒȓȟȠȞȡȘȠȡȞȩ, ȟȜȟȠȜȭȧȓȗȖȕȒȐȡȣȜȏșȎȟȠȓȗȟȞȎȕșȖȥțȩȚȖȝȜȑșȜȧȎȬȧȖȚȖ, ȜȠȞȎȔȎȬȧȖȚȖȖȫȚȖȟȟȖȜțțȩȚȖȣȎȞȎȘȠȓȞȖȟȠȖȘȎȚȖ [27, 28]. ȅȖȟșȓțțȎȭ ȚȜȒȓșȪȞȎȟȝȞȓȒȓșȓțȖȭ ȠȓȚȝȓȞȎȠȡȞțȩȣ ȝȜșȓȗ Ȑ ȟȖșȡ ȝȓȞȖȜȒȖȥțȜȟȠȖ ȠȜȝȜșȜȑȖȥȓȟȘȜȑȜ ȞȖȟȡțȘȎ ȚȜȔȓȠ ȏȩȠȪ ȟȐȓȒȓțȎȘ ȚȜȒȓșȖȘȐȎȒȞȎȠȎ. ȂȞȎȑȚȓțȠȠȜȝȜșȜȑȖȖ, ȐȩȒȓșȓțțȩȗȒșȭ ȞȎȟȥȓȠȜȐ, Ȗ ȟȓȥȓțȖȓ ȟȠȞȡȘȠȡȞȩ ȝȜȘȎȕȎțȩ țȎ ȞȖȟ. 2.6 (ȜȏșȎȟȠȪ Ǯ1 ȝȜȘȞȩȠȎ ȚȜșȖȏȒȓțȜȚ, Ǯ2 – ȒȐȡȜȘȖȟȪȬ ȘȞȓȚțȖȭ, ȜȏȞȎȠțȎȭ ȟȠȜȞȜțȎ

ǾȖȟ. 2.6. ȂȞȎȑȚȓțȠ ȠȜȝȜșȜȑȖȖ (Ȏ) Ȗ ȟȓȥȓțȖȓ ȟȠȞȡȘȠȡȞȩ (ȏ): 1 – ȚȜșȖȏȒȓț; 2 – ȒȐȡȜȘȖȟȪ ȘȞȓȚțȖȭ; 3 – ȘȞȓȚțȖȗ [26]

304 ǮȑȓȓȐ Ǽ.Ǯ., ǯȓșȭȓȐ Ǯ.dz., ǯȜșȠȜȐȓȤ ǻ.ǿ., ǸȖȟȓșȓȐ ǰ.ǿ., ǸȜțȎȘȜȐȎ Ǿ.ǰ. Ȗ ȒȞ.

ȝșȎȟȠȖțȩ – ȥȖȟȠȩȗ ȘȞȓȚțȖȗ). ǿȠȓȝȓțȪ ȕȎȝȜșțȓțȖȭ ȟȠȞȡȘȠȡȞȩ ȚȜșȖȏȒȓțȜȚ ȜȝȞȓȒȓșȭșȎȟȪ ȟȜȜȠțȜȦȓțȖȓȚ ȝșȜȧȎȒȓȗ A1 Ȗ A2.

ǾȎȟȝȞȓȒȓșȓțȖȓ ȠȓȚȝȓȞȎȠȡȞȩ Ȑ ȠȎȘȜȗ ȟȠȞȡȘȠȡȞȓ ȚȜȔȓȠ ȏȩȠȪ țȎȗȒȓțȜ Ȗȕ ȡȞȎȐțȓțȖȭ ȠȓȝșȜȝȞȜȐȜȒțȜȟȠȖ [26]

SAT( )

sT

 

s

¡K(T )

sT ¯

 

s

¡K(T )

sT ¯

+ Г (x, y,T ) П (x, y,T ) ,(2.2)

 

=

 

°

+

 

°

 

 

 

 

st

 

 

¡

°

 

 

¡

°

 

 

 

sx ¢

sx ±

 

sy ¢

sy ±

 

ȑȒȓ S, c(Ȁ), K(T) – ȝșȜȠțȜȟȠȪ, ȠȓȝșȜȓȚȘȜȟȠȪ Ȗ ȘȜȫȢȢȖȤȖȓțȠ ȠȓȝșȜȝȞȜȐȜȒțȜȟȠȖ ȟȜȜȠȐȓȠȟȠȐȓțțȜ; ȠȓȚȝȓȞȎȠȡȞȎ Ȁ ȭȐșȭȓȠȟȭ ȢȡțȘȤȖȓȗ ȘȜȜȞȒȖțȎȠ ȣ, ȡȖ ȐȞȓȚȓțȖ t. ȂȡțȘȤȖȖ DZ(ȣ,ȡ,Ȁ) Ȗ ǽ(ȣ,ȡ,Ȁ) ȜȝȖȟȩȐȎȬȠ ȠȓȝșȜȐȜȗ ȖȟȠȜȥțȖȘ Ȗ ȠȓȝșȜȐȩȓ ȝȜȠȓȞȖ ȟ ȝȜȐȓȞȣțȜȟȠȖ ȟȠȞȡȘȠȡȞȩ.

DZȞȎțȖȥțȩȓ Ȗ țȎȥȎșȪțȩȓ ȡȟșȜȐȖȭ ȕȎȝȖȟȩȐȎȬȠȟȭ Ȑ ȐȖȒȓ

T(x, y)

 

 

= T ;

sT

= 0 ,

(2.3)

 

 

 

 

t=0

0

s

n

 

 

 

 

 

 

ȑȒȓ T0 – ȠȓȚȝȓȞȎȠȡȞȎ ȜȘȞȡȔȎȬȧȓȗ ȟȞȓȒȩ, n – ȐȓȘȠȜȞ țȜȞȚȎșȖ Ș ȑȞȎțȖȤȓ ȜȏșȎȟȠȖ.

ǼȟȜȏȓțțȜȟȠȪȬțȎȑȞȓȐȎȘȞȓȚțȖȓȐȩȣȟȠȞȡȘȠȡȞ, ȥȎȟȠȖȥțȜȝȜȘȞȩȠȩȣ ȟșȜȓȚ SiƖ2, ȭȐșȭȓȠȟȭ ȕȎȐȖȟȖȚȜȟȠȪ ȖțȠȓȑȞȎșȪțȜȑȜ ȘȜȫȢȢȖȤȖȓțȠȎ ȝȞȜȝȡȟȘȎțȖȭ ȟșȜȭ ȒȖȜȘȟȖȒȎ ȜȠ ȠȜșȧȖțȩ. ȋȠȜ ȝȞȖȐȜȒȖȠ Ș ȠȜȚȡ, ȥȠȜ, ȣȜȠȭ ȝȜȑșȜȧȓțȖȓȖȕșȡȥȓțȖȭȐȟșȜȓSiƖ2 ȝȞȓțȓȏȞȓȔȖȚȜȚȎșȜ, ȖțȠȓȑȞȎșȪțȩȗ ȘȜȫȢȢȖȤȖȓțȠȝȜȑșȜȧȓțȖȭȘȞȓȚțȖȭ, ȝȜȘȞȩȠȜȑȜȟșȜȓȚSiƖ2, ȐȩȦȓ, ȥȓȚ ȝȞȖ ȜȠȟȡȠȟȠȐȖȖ ȝȜȘȞȩȠȖȭ. ǸȞȜȚȓ ȠȜȑȜ, ȖțȠȓȑȞȎșȪțȩȗ ȘȜȫȢȢȖȤȖȓțȠ ȝȞȜȝȡȟȘȎțȖȭ ȟșȜȭ SiO2 ȕȎȐȖȟȖȠ ȜȠ ȠȜșȧȖțȩ ȝșȓțȘȖ Ȗ ȖȚȓȓȠ ȐȝșȜȠȪ ȒȜ ȠȜșȧȖțȩ 2 ȚȘȚ ȜȝȞȓȒȓșȓțțȡȬ ȝȓȞȖȜȒȖȥțȜȟȠȪ ȞȎȟȝȜșȜȔȓțȖȭ ȚȎȘȟȖȚȡȚȜȐȝȞȜȝȡȟȘȎțȖȭȖȕșȡȥȓțȖȭ. ȋȠȜțȓȜȏȣȜȒȖȚȜȡȥȖȠȩȐȎȠȪȝȞȖ ȞȎȟȥȓȠȓ ȖțȠȓȑȞȎșȪțȜȑȜ ȘȜȫȢȢȖȤȖȓțȠȎ ȝȜȑșȜȧȓțȖȭ ȟȠȞȡȘȠȡȞȩ SiƖ2–Si

M2

 

Ti (df )[1 R]¨ [1 exp( B(M,T ,NS )h)]dM

 

At (T ,h,df ,NS ) =

M1

, (2.4)

M2

¨ I(M)dM

M1

ȑȒȓ h – ȠȜșȧȖțȎ ȝșȎȟȠȖț; df – ȠȜșȧȖțȎ ȒȖȫșȓȘȠȞȖȘȎ; Ns – ȘȜțȤȓțȠȞȎȤȖȭ ȝȞȖȚȓȟȖ Ȑ ȝȜȒșȜȔȘȓ; R – ȘȜȫȢȢȖȤȖȓțȠ ȜȠȞȎȔȓțȖȭ ȘȞȓȚțȖȓȐȜȗ ȝȜȒșȜȔȘȖ; Ȁi – ȝȞȖȐȓȒȓțțȩȗ ȖțȠȓȑȞȎșȪțȩȗ ȘȜȫȢȢȖȤȖȓțȠ ȝȞȜȝȡȟȘȎțȖȭ SiO2; I(M) – ȟȝȓȘȠȞ ȖȟȠȜȥțȖȘȎ ȖȕșȡȥȓțȖȭ.

ȅȎȟȠȪ II

305

 

 

ǾȓȦȓțȖȓȡȞȎȐțȓțȖȭ(2.4) ȝȜȘȎȕȩȐȎȓȠ, ȥȠȜȒșȭȘȞȓȚțȖȓȐȩȣȝșȎȟȠȖț ȠȜșȧȖțȜȗ 400 ȚȘȚ ȟ ȡȒȓșȪțȩȚ ȟȜȝȞȜȠȖȐșȓțȖȓȚ 20 ǼȚ¸ȟȚ Ȗ ȠȜșȧȖțȜȗȝșȓțȘȖSiƖ2 0.65 ȚȘȚȟȡȥȓȠȜȚȟȝȓȘȠȞȎȖȕșȡȥȓțȖȭȑȎșȜȑȓțțȩȣ șȎȚȝ țȎȏșȬȒȎȓȠȟȭ ȞȓȕȘȜȓ ȐȜȕȞȎȟȠȎțȖȓ Ǯt, ȝȞȖ ȠȓȚȝȓȞȎȠȡȞȎȣ ȏȜșȓȓ 700 K. ȋȠȜȟȐȭȕȎțȜȟțȎȥȎșȜȚȖțȠȓțȟȖȐțȜȑȜȝȜȑșȜȧȓțȖȭȟȐȓȠȎ ȟȐȜȏȜȒțȩȚȖ țȜȟȖȠȓșȭȚȖ ȕȎȞȭȒȎ.

ȀȓȝșȜȐȩȓ ȖȟȠȜȥțȖȘȖ Ȓșȭ ȜȏșȎȟȠȓȗ A1 Ȗ A2 (ȞȖȟ. 2.5) ȚȜȔțȜ ȕȎȝȖȟȎȠȪ Ȑ ȐȖȒȓ

Г1

=

P(1 R1 )

, Г 2

=

PAt (T )

,

(2.5)

h

h

 

 

 

 

 

 

ȑȒȓ Ǿ – ȝșȜȠțȜȟȠȪ ȚȜȧțȜȟȠȖ ȖȟȠȜȥțȖȘȎ ȖȕșȡȥȓțȖȭ; R1 – ȘȜȫȢȢȖȤȖȓțȠ ȜȠȞȎȔȓțȖȭ ȚȜșȖȏȒȓțȎ; Ǯt(Ȁ) – ȖțȠȓȑȞȎșȪțȩȗ ȘȜȫȢȢȖȤȖȓțȠ ȝȜȑșȜȧȓțȖȭ ȟȠȞȡȘȠȡȞȩ SiƖ2-Si.

ȁȞȎȐțȓțȖȭ ȠȓȝșȜȜȠȒȎȥȖ Ȑ ȜȏșȎȟȠȭȣ A1 Ȗ A2 ȟ ȡȥȓȠȜȚ ȞȎȒȖȎȤȖȜțțȩȣ ȝȜȠȓȞȪ Ȗ ȘȜțȐȓȘȠȖȐțȜȑȜ ȠȓȝșȜȜȏȚȓțȎ ȟ ȜȘȞȡȔȎȬȧȓȗ ȟȞȓȒȜȗ ȖȚȓȬȠ ȐȖȒ

 

 

 

(e + e )T(T 4

T 4 ) + 2B

k

(T T )

 

 

П

1

=

1

3

0

 

 

S

 

 

для А ,

 

 

 

 

 

 

 

 

 

 

 

 

h

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

(2.6)

 

 

 

(e + e )T(T 4

T 4 ) + 2B

 

 

(T T )

 

 

 

 

k

 

 

П

2 =

2

3

0

 

 

S

для А2 ,

 

 

h

 

 

 

 

 

 

 

ȑȒȓȓ1, ȓ2, ȓ3

 

 

 

 

 

 

 

 

 

 

 

 

 

– ȫȢȢȓȘȠȖȐțȩȓȘȜȫȢȢȖȤȖȓțȠȩȖȕșȡȥȓțȖȭMo, SiƖ2, Si ȟȜ-

ȜȠȐȓȠȟȠȐȓțțȜ; T– ȝȜȟȠȜȭțțȎȭǿȠȓȢȎțȎ-ǯȜșȪȤȚȎțȎ; Ȁ0 – ȠȓȚȝȓȞȎȠȡȞȎ

ȜȘȞȡȔȎȬȧȓȗ ȟȞȓȒȩ; ȀS – ȠȓȚȝȓȞȎȠȡȞȎ ȟȠȓțȜȘ ȘȎȚȓȞȩ; Bk – ȘȜȫȢȢȖ-

ȤȖȓțȠ ȘȜțȐȓȘȠȖȐțȜȑȜ ȠȓȝșȜȜȏȚȓțȎ. ǽȞȖ ȞȎȟȥȓȠȎȣ ȖȟȝȜșȪȕȜȐȎșȖȟȪ

țȓșȖțȓȗțȩȓ ȕȎȐȖȟȖȚȜȟȠȖ K(Ȁ) Ȗ ȟ(Ȁ) [25]:

 

 

 

 

£

 

 

3

 

 

 

 

 

 

 

 

 

 

¦2.722exp( 2.338¸10

T ), T = 300 900K

 

K(T ) =

¦

 

 

 

 

 

 

 

 

 

 

 

, [В/см¸K]

¤

 

 

 

 

 

 

 

 

 

 

 

 

 

¦0.648exp( 7.275¸10 4T ), T > 900K

 

 

 

 

¥¦

 

 

 

 

 

 

 

 

 

 

 

 

c(T ) = 0.863 + 8.345¸10 5T +1.624 ¸10 4T 2 ,

[Дж/г ¸K]

ǽșȜȠțȜȟȠȪ Si ȝȞȖ T= 300 K S= 2.32 ȑ/ȟȚ3.

ǻȎȞȖȟ. 2.7ȎȝȞȓȒȟȠȎȐșȓțȩȞȎȟȥȓȠțȩȓȕȎȐȖȟȖȚȜȟȠȖȠȓȚȝȓȞȎȠȡȞȩ Ȑ ȠȜȥȘȓ D Ȗ ȞȎȕțȜȟȠȖ ȠȓȚȝȓȞȎȠȡȞ ȚȓȔȒȡ ȠȜȥȘȎȚȖ B Ȗ D ȜȠ ȐȞȓȚȓțȖ ȝȞȖ ȜȏșȡȥȓțȖȖ șȖȤȓȐȜȗ ȟȠȜȞȜțȩ ȟȠȞȡȘȠȡȞȩ Mo-SiO2-Si. ǻȎ ȞȖȟ. 2.7ȏ ȝȜȘȎȕȎțȜ ȞȎȟȝȞȓȒȓșȓțȖȓ ȠȓȚȝȓȞȎȠȡȞȩ Ȑ ȠȜȥȘȓ D Ȗ ȞȎȕțȜȟȠȖ ȠȓȚȝȓȞȎȠȡȞ ȚȓȔȒȡ ȠȜȥȘȎȚȖ B Ȗ D ȝȞȖ ȜȏșȡȥȓțȖȖ ȜȏȞȎȠțȜȗ ȟȠȜȞȜțȩ

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]