Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
информатика.docx
Скачиваний:
208
Добавлен:
23.03.2016
Размер:
263.47 Кб
Скачать

Понятие алгоритма. Исполнители алгоритмов. Свойства алгоритмов

Понятие алгоритма так же фундаментально для информатики, как и понятие информации. Существует много различных определений алгоритма, так как это понятие достаточно широкое и используется в различных областях науки, техники и повседневной жизни.

Алгоритм – понятная и точная  последовательность действий, описывающая процесс преобразования объекта из начального состояния в конечное.

Алгоритм - это предназначенное для конкретного исполнителя точное описание последовательности действий, направленных на решение поставленной задачи.

Исполнителем алгоритма может быть как человек (кулинарные рецепты, различные инструкции, алгоритмы математических вычислений), так и техническое устройство. Различные машины (компьютеры, промышленные роботы, современная бытовая техника) являются формальными исполнителями алгоритмов. От формального исполнителя не требуется понимание сущности решаемой задачи, но требуется точное выполнение последовательности команд.  

Алгоритм можно записывать различными способами (словесное описание, графическое описание – блок схема, программа на одном из языков программирования и т.д.). Программа – это алгоритм, записанный на языке программирования.

 Для создания алгоритма (программы) необходимо знать:

  •  полный набор исходных данных задачи (начальное состояние объекта);

  •  цель создания алгоритма (конечное состояние объекта);

  •   систему команд исполнителя (то есть набор команд, которые исполнитель понимает и может выполнить).

 Полученный алгоритм  (программа) должен обладать следующим набором свойств:

  •          дискретность (алгоритм разбит на отдельные шаги - команды);

  •          однозначность (каждая команда определяет единственно возможное действие исполнителя);

  •          понятность (все команды алгоритма входят в систему команд исполнителя);

  •          результативность (исполнитель должен решить задачу за конечное число шагов).

Большая часть алгоритмов обладает также свойством массовости (с помощью одного и того же алгоритма можно решать множество однотипных задач).

Способы описания алгоритмов

Выше отмечалось, что один и тот же алгоритм может быть записан по-разному. Можно записывать алгоритм естественным языком. В таком виде мы используем рецепты, инструкции и т.п. Для записи алгоритмов, предназначенных формальным исполнителям, разработаны специальные языки программирования. Любой алгоритм можно описать графически в виде блок-схемы. Для этого разработана специальная система обозначений:

Обозначение

Описание

Примечания

Начало и конец алгоритма

 

Ввод и вывод данных. 

Вывод данных иногда обозначают иначе:

Действие

В вычислительных алгоритмах так обозначают присваивание

Развилка

Развилка - компонент, необходимый для реализации ветвлений и циклов

Начало цикла с параметром

 

Типовой процесс

В программировании - процедуры или подпрограммы

Переходы между блоками

 

 Приведем пример описания алгоритма суммирования двух величин в виде блок-схемы:

Такой способ описания алгоритм наиболее нагляден и понятен человеку. Поэтому, алгоритмы формальных исполнителей обычно разрабатывают сначала в виде блок-схемы, и только затем создают программу на одном из языков программирования.

Типовые алгоритмические структуры

Программист имеет возможность конструировать и использовать нетипичные алгоритмические структуры, однако, в этом нет необходимости. Любой сколь угодно сложный алгоритм может быть разработан на основе трёх типовых структур: следования, ветвления и повторения. При этом структуры могут располагаться последовательно друг за другом или вкладываться друг в друга.

Линейная структура (следование)

Наиболее простой алгоритмической структурой является линейнаяВ ней все операции выполняются один раз в том порядке, в котором они записаны.

 

 Ветвление

В полном ветвлении предусмотрено два варианта действий исполнителя в зависимости от значения логического выражения (условия). Если условие истинно, то выполняться будет только первая ветвь, иначе только вторая ветвь.

        

Вторая ветвь может быть пустой. Такая структура называется неполным ветвлением или обходом.

 Из нескольких ветвлений можно сконструировать  структуру «выбор» (множественное ветвление), которая будет выбирать не из двух, а из большего количества вариантов действий исполнителя, зависящих от нескольких условий. Существенно, что выполняется только одна ветвь - в такой структуре важное значение приобретает порядок следования условий: если выполняются несколько условий, то сработает только одно из них - первое сверху.

      

 Цикл (повторение)

Цикл позволяет организовать многократное повторение одной и той же последовательности команд - она называется телом цикла. В различных видах циклических алгоритмов количество повторений может зависеть от значения логического выражения (условия) или может быть жестко задано в самой структуре. Различают циклы : «до», «пока», циклы со счётчиком. В циклах «до» и «пока» логическое выражение (условие) может предшествовать телу цикла (цикл с предусловием) или завершать цикл (цикл с послеусловием).

  Циклы «до» - повторение тела цикла до выполнения условия:

 

 Циклы «пока» - повторение тела цикла пока условие выполняется (истинно):

Циклы со счётчиком (с параметром)  – повторение тела цикла заданное число раз:

 

 

 

Вспомогательный алгоритм (подпрограмма, процедура)

Вспомогательный алгоритм представляет собой модуль, к которому можно многократно обращаться из основного алгоритма. Использование вспомогательных алгоритмов может существенно уменьшить размер алгоритма и упростить его разработку.

 

Методы разработки сложных алгоритмов

Существует два метода разработки сложных алгоритмов:

Метод последовательной детализации задачи («сверху-вниз») состоит в том, что исходная сложная задача разбивается на подзадачи. Каждая из подзадач рассматривается и решается отдельно. Если какие-либо из подзадач сложны, они также разбиваются на подзадачи. Процесс продолжается до тех пор, пока подзадачи не сведутся  к элементарным. Решения отдельных подзадач затем собираются в единый алгоритм решения исходной задачи. Метод широко используется, так как позволяет вести разработку общего алгоритма одновременно нескольким  программистам, решающим локальные подзадачи. Это необходимое условие быстрой разработки программных продуктов.

Сборочный метод («снизу-вверх») заключается в создании множества программных модулей, реализующих решение типичных задач. При решении сложной задачи программист может использовать разработанные модули в качестве вспомогательных алгоритмов (процедур). Во многих системах программирования уже существуют подобные наборы модулей, что существенно упрощает и ускоряет создание сложного алгоритма.

Алгоритмы и процессы управления

Управление - целенаправленное взаимодействие объектов, одни из которых являются управляющими, другие - управляемыми.

В простейшем случае таких объектов два:

 

С точки зрения информатики управляющие воздействия можно рассматривать как управляющую информацию. Информация может передаваться в форме команд. Последовательность команд по управлению объектом, приводящая к заранее поставленной цели, называется алгоритмом управления. Следовательно, объект управления можно назвать исполнителем управляющего алгоритма. В рассмотренном примере, управляющий объект работает "не глядя" на то, что происходит с управляющим объектом (управление без обратной связи). Такая схема управления называется незамкнутой. Другая схема управления может учитывать информацию о процессах, происходящих в объекте управления:

 В этом случае, алгоритм управления должен быть достаточно гибким, чтобы анализировать эту информацию и принимать решение о своих дальнейших действиях в зависимости от состояния объекта управления (управление с обратной связью). Такая схема управления называется замкнутой.

 Более подробно процессы управления изучаются рассматриваются кибернетикой. Эта наука утверждает, что самые разнообразные процессы  управления в обществе, природе и технике происходят сходным образом, подчиняются одним и тем же принципам.

 В начало темы

 

 

Тема 8. Основы алгоритмизации и программирования

8.1. Понятие об алгоритме и исполнителе алгоритмов. Свойства алгоритмов

"Алгоритм" является фундаментальным понятием информатики. Представление о нем необходимо для эффективного применения вычислительной техники к решению практических задач. Алгоритм - это предписание исполнителю (человеку или автомату) выполнить точно определенную последовательность действий, направленных на достижение заданной цели. Алгоритм - это сформулированное на некотором языке правило, указывающее на действия, последовательное выполнение которых приводит от исходных данных к искомому результату. Значение слова алгоритм очень схоже со значением слов рецепт, процесс, метод, способ. Однако любой алгоритм, в отличие от рецепта или способа, обязательно обладает следующими свойствами.      Свойства алгоритма (отличающие его от любых других предписаний): понятность (для конкретного исполнителя); дискретность (команды последовательны, с точной фиксацией моментов начала и конца выполнения команды); точность (после выполнения каждой команды точно известно, завершено ли исполнение алгоритма или же какая команда должна выполниться следующей); результативность (после конечного числа шагов задача решается или же становится ясно, что процесс решения не может быть продолжен): массовость (алгоритм единым образом применяется к любой конкретной формулировке задачи, для которой он разработан).      1. Дискретность - разбиение алгоритма на ряд отдельных законченных действий - шагов. Выполнение алгоритма разбивается на последовательность законченных действий - шагов. Каждое действие должно быть закончено исполнителем алгоритма прежде, чем он приступит к исполнению следующего действия.      2. Точность - однозначные указания. На каждом шаге однозначно определено преобразование объектов среды исполнителя, полученной на предыдущих шагах алгоритма. Если алгоритм многократно применяется к одному и тому же набору исходных данных, то на выходе он получает каждый раз один и тот же результат. Запись алгоритма должна быть такой, чтобы на каждом шаге его выполнения было известно, какую команду надо выполнять следующей.      3. Понятность - однозначное понимание и исполнение каждого шага алгоритма его исполнителем. Алгоритм должен быть записан на понятном для исполнителя языке.      4. Результативность - обязательное получение результата за конечное число шагов. Каждый шаг (и алгоритм в целом) после своего завершения дает среду, в которой все объекты однозначно определены. Если это по каким-либо причинам невозможно, то алгоритм должен сообщать, что решение задачи не существует. Работа алгоритма должна быть завершена за конечное число шагов. Информатика оперирует только с конечными объектами и конечными процессами, поэтому вопрос о рассмотрении бесконечных алгоритмов остается за рамками теории алгоритмов. 5. Массовость - применение алгоритма к решению целого класса однотипных задач.      Система команд исполнителя - точно описанная обстановка, включающая формулировку решаемой задачи, перечень объектов, вовлекаемых в условие задачи и в ее решение, и возможности исполнителя: свойства объектов, которые он может узнать и действия, которые он может совершить. Формальное исполнение алгоритма производит компилятор или интерпретатор, проверяя семантику.