
- •Термодинамика и молекулярная физика
- •Состояние макроскопической системы и его параметры. Микро- и макропараметры системы.
- •Состояние макроскопической системы и его параметры. Понятие о тепловом равновесии.
- •Контакт макросистем и условия равновесия. Температура.
- •Уравнение состояния системы. Уравнение состояния идеального газа.
- •Равновесные и неравновесные процессы. Время релаксации.
- •Вероятность. Статистический ансамбль. Функция вероятности.
- •Вероятность микросостояний. Доступные микросостояния. Статистический вес.
- •Статистический вес и энтропия. Закон возрастания энтропии. Равновесные и неравновесные состояния.
- •9. Внутренняя энергия идеального газа. Теорема о равнораспределении энергии молекул по степеням свободы.
- •10. Молярные теплоемкости Сp и Сv, показатель адиабаты γ. Уравнение Майера.
- •11. Теплота. Первое начало термодинамики.
- •12. Адиабатический процесс. Уравнение Пуассона для адиабатического процесса. Показатель адиабаты.
- •13. Второе начало термодинамики. Неравенство Клаузиуса.
- •14. Энтропия и теплота. Циклические процессы. Кпд цикла.
- •15. Тепловой двигатель. Цикл Карно и его кпд.
- •16. Распределение частиц идеального газа по абсолютному значению скорости. Вероятная, средняя и среднеквадратичная скорости молекул.
- •Равновесие идеального газа в поле тяготения Земли. Барометрическая формула.
Контакт макросистем и условия равновесия. Температура.
Про взаимодействующие макроскопические системы говорят, что они находятся в термодинамическом контакте. Обычно различают тепловой, материальный (или диффузионный) и механические контакты.
При тепловом контакте системы могут обмениваться энергией без совершения работы; по достижении теплового равновесия макроскопические потоки энергии между системами прекращаются.
При материальном (диффузионном) контакте системы могут обмениваться частицами.
При механических контактах системы могут совершать работу друг над другом. В простейшем варианте механического контакта системы разгорожены подвижной стенкой, и равновесие (механическое) достигается при выравнивании давлений с обеих сторон стенки. К механическим контактам особого рода относятся взаимодействия термодинамических систем с внешними полями (внешними источниками работы). Последние представляют собой заданные функции координат (и времени в случае переменных полей), не зависящие от наличия макросистемы, и их можно рассматривать как классические механические системы с одной или несколькими степенями свободы и, соответственно, с нулевой энтропией. Во многих задачах статистической физики приходится иметь дело с комбинированными контактами: тепловой и механический контакты (например, подвижная теплопроводящая стенка между подсистемами), тепловой и материальный (пористая перегородка).
В состоянии термодинамического равновесия:
- в системе прекращаются все необратимые процессы, связанные с изменением энергии: теплопроводность, диффузия, химические реакции и др.;
- макроскопические параметры системы не меняются со временем.
Выполнение условий постоянства значений трех типов термодинамических величин в каждой точке системы, т.е. отсутствие их градиентов и связанных с ними потоками массы и энергии, может служить практическим доказательством, что состояние термодинамического равновесия достигнуто. Приведем эти условия.
1) Постоянство давления Р во всех точках системы, означающее установление механического равновесия - является первым явно измеряемым на практике условием термодинамического равновесия. Это условие означает отсутствие макроскопического взаимного движения отдельных частей системы и, следовательно, отсутствие переноса энергии и массы на макроуровне.
2) Постоянство температуры Т во всех точках системы, означающее установление теплового равновесия - является вторым явным условием термодинамического равновесия. Иногда это условие называется нулевым законом термодинамики, когда-то установленным экспериментально. Это условие означает отсутствие тепловых, т.е. энергетических, потоков в системе на молекулярном уровне.
3) Третье условие термодинамического равновесия должно отражать отсутствие потоков массы на молекулярном уровне, и по физическому смыслу может быть сформулировано как равенство нулю средних скоростей (не тепловых) движения молекул или как отсутствия явления молекулярной диффузии. Здесь отметим только, что в простейших случаях в отсутствие силовых полей, фазовых переходов и химических реакций третьим условием равновесия будет постоянство концентраций веществ во всей системе.
Температура тела – это физический параметр, одинаковый во всех частях системы тел, которая находится в состоянии термодинамического равновесия.
Понятие «температура» было введено в физику в качестве физической величины, характеризующей степень нагретости тела не по субъективным ощущениям экспериментатора, а на основании объективных показаний физических приборов.
Термометр – прибор для измерения температуры, действие которого основано на взаимно-однозначной связи наблюдаемого параметра системы (давления, объема, электропроводности, яркости свечения и т. д.) с температурой.
В СИ температура выражается в кельвинах (К). По этой шкале 0 °С = 273,15 К и 100 °С = 373,15 К. В обиходе используются и другие температурные шкалы.
В некоторых странах (например, в США) до сих пор активно используется другая шкала – шкала Фаренгейта. На шкале Фаренгейта точка таяния льда равна +32 °F, а точка кипения воды равна +212 °F. При этом один градус Фаренгейта равен 1/180 разности этих температур. Перевести градусы из Цельсия в Фаренгейт можно так: tF = tC * (9/5) + 32