
- •1. Окрестность точки на числовой прямой. Предел функции в точке. Предел в бесконечно удаленной точке. Геометрическая интерпретация предела.
- •2. Односторонние пределы. Теорема о существовании предела функции в точке.
- •3. Непрерывность функции в точке. Точки разрыва. Классификация точек разрыва.
- •3) Классификация точек разрыва функции
- •4. Предел функции в точке. Единственность предела.
- •5. Бесконечно малые функции в точке. Теоремы о бесконечно малых.
- •6. Сравнение бесконечно малых. Эквивалентные бесконечно малые.
- •7. Теорема о предельном переходе под знаком неравенства. Теорема о сжатой
- •8. Теорема о сохранении знака функции. Теорема о связи функции, имеющей
- •9. Односторонняя непрерывность. Непрерывность функции на отрезке. Теоремы
- •10. Производная функция в точке. Геометрическая и механическая интерпретация.
- •11. Дифференцируемые функции. Необходимое и достаточное условие
- •12. Производная функции в точке. Правила дифференцирования суммы,
- •13. Теорема Ферма.
- •14. Теорема Ролля
- •15. Теорема Лагранжа
- •16. Теорема Коши
- •17. Правило Лопиталя
- •18. Экстремумы функции одной переменной. Необходимое условие экстремума.
- •19. Экстремумы функции одной переменной. Достаточное условие экстремума.
- •20. Направление выпуклости графика функции. Достаточное условие выпуклости
- •21. Точки перегиба. Необходимое условие существования перегиба. Достаточное
- •22. Понятие о многочлене Тейлора. Формула Тейлора для функции одной переменной (без доказательства). Формула Маклорена для функций ,,.
- •23. Первообразная и неопределенный интеграл. Их свойства.
- •24. Первообразная и неопределенный интеграл. Методы вычисления
- •Интегрирование методом подстановки.
- •Интегрирование по частям.
- •25. Дробно-рациональная функция. Типы простейших алгебраических дробей и их интегрирование.
- •26. Интегральная сумма Римана. Определенный интеграл Римана. Интегрируемые функции. Геометрическая интерпретация определенного интеграла.
11. Дифференцируемые функции. Необходимое и достаточное условие
дифференцируемости. Дифференциал. Непрерывность дифференцируемой
функции.
1) Дифференци́руемаяфу́нкция в математическом анализе — это функция, которая может быть хорошо приближена линейной функцией. Дифференцируемость является одним из фундаментальных понятий в математике и имеет большое число приложений как внутри неё, так и в естественных науках, широко использующих математический аппарат.
2) Для того, чтобы функция f(x) была дифференцируема в точке x0 необходимо и достаточно, чтобы у нее существовала производная в этой точке.
При этом
|
Δy = f(x0+Δx)-f(x0) = f '(x0)Δx+α(Δx)Δx, |
|
где α(Δx) - бесконечно малая функция, при Δx→0.
3) Дифференциа́л (от лат. differentia — разность, различие) — линейная часть приращения функции.
4) Теорема 1. Пусть функция y = f(x) дифференцируема на интервале (a, b). Тогда функция fнепрерывна на (a, b).
Доказательство
Возьмем
произвольное фиксированное число x (a,b).
По условию теоремы
Следовательно,
в малой окрестности числа x0 можно
определить функцию α
= α(Δx),
стремящуюся к нулю при такую,
что
Но
тогда и,
следовательно, функция f непрерывна
приx =
x0.
Так как число x0 –
произвольное, то функция fнепрерывна
на всем интервале (a,
b).
Теорема доказана.
12. Производная функции в точке. Правила дифференцирования суммы,
произведения и частного.
1)
Определение. Производной
функции называетсяпредел отношения
приращения функции к приращению
независимой переменной при стремлении
последнего к нулю (если этот предел
существует):
.
2) Правила дифференцирования суммы, произведения и частного
Теорема Если функции u=u(x) и v=v(x) имеют в точке x производные, то сумма (разность), произведение и частное этих функций также имеют производные в этой точке, и справедливы следующие формулы: 1) (u±v)/=u/±v/ , 2) (u·v)/=u/v+v/u , 3) (vu)=v2u/v−v/u .
Доказательство Из определения производной:
(u±v)/=limΔx→0Δx[u(x+Δx)±v(x+Δx)]−[u(x)±v(x)]= =limΔx→0Δx[u(x+Δx)−u(x)]±[v(x+Δx)−v(x)]= .
=limΔx→0Δxu(x+Δx)−u(x)±limΔx→0Δxv(x+Δx)−v(x)=u/±v/
(u·v)/=limΔx→0Δxu(x+Δx)·v(x+Δx)−u(x)·v(x)±v(x+Δx)·v(x)= limΔx→0Δxu(x+Δx)[v(x+Δx)−v(x)]+
+limΔx→0Δxv(x)[u(x+Δx)−u(x)]=uv/+vu/.
(vu)/=limΔx→0Δxv(x+Δx)u(x+Δx)−v(x)u(x)=limΔx→0Δx·v(x+Δx)·v(x)u(x+Δx)·v(x)−u(x)·v(x+Δx)±u(x)·v(x)=v2u/v−v/u.
Теорема доказана.
13. Теорема Ферма.
Для
любого натурального числа уравнение
не
имеет натуральных решений ,
и
.
14. Теорема Ролля
Теорема.
Пусть
функция дифференцируема в открытом промежутке
,
на концах этого промежутка сохраняет
непрерывность и принимает одинаковые
значения:
.
Тогда существует точка
,
в которой производная функции
равна нулю:
.
Рис.
3. Теорема Ролляустанавливает условия
существования хотя бы одной точкиc,
в которой касательная к графику функции
параллельна оси 0x.
Таких точек может быть несколько.
Доказательство.
Если в промежутке
,
то
во всех точках этого промежутка. Иначе
наибольшее значениеM
функции
превышает ее наименьшее значениеm
в промежутке
.
Поскольку на концах этого промежутка
функция
принимает одинаковые значения, то по
крайней мере одно из значений,M
или m,
достигается во внутренней точке c
промежутка
.
Тогда по теореме Ферма
.