
- •1. Окрестность точки на числовой прямой. Предел функции в точке. Предел в бесконечно удаленной точке. Геометрическая интерпретация предела.
- •2. Односторонние пределы. Теорема о существовании предела функции в точке.
- •3. Непрерывность функции в точке. Точки разрыва. Классификация точек разрыва.
- •3) Классификация точек разрыва функции
- •4. Предел функции в точке. Единственность предела.
- •5. Бесконечно малые функции в точке. Теоремы о бесконечно малых.
- •6. Сравнение бесконечно малых. Эквивалентные бесконечно малые.
- •7. Теорема о предельном переходе под знаком неравенства. Теорема о сжатой
- •8. Теорема о сохранении знака функции. Теорема о связи функции, имеющей
- •9. Односторонняя непрерывность. Непрерывность функции на отрезке. Теоремы
- •10. Производная функция в точке. Геометрическая и механическая интерпретация.
- •11. Дифференцируемые функции. Необходимое и достаточное условие
- •12. Производная функции в точке. Правила дифференцирования суммы,
- •13. Теорема Ферма.
- •14. Теорема Ролля
- •15. Теорема Лагранжа
- •16. Теорема Коши
- •17. Правило Лопиталя
- •18. Экстремумы функции одной переменной. Необходимое условие экстремума.
- •19. Экстремумы функции одной переменной. Достаточное условие экстремума.
- •20. Направление выпуклости графика функции. Достаточное условие выпуклости
- •21. Точки перегиба. Необходимое условие существования перегиба. Достаточное
- •22. Понятие о многочлене Тейлора. Формула Тейлора для функции одной переменной (без доказательства). Формула Маклорена для функций ,,.
- •23. Первообразная и неопределенный интеграл. Их свойства.
- •24. Первообразная и неопределенный интеграл. Методы вычисления
- •Интегрирование методом подстановки.
- •Интегрирование по частям.
- •25. Дробно-рациональная функция. Типы простейших алгебраических дробей и их интегрирование.
- •26. Интегральная сумма Римана. Определенный интеграл Римана. Интегрируемые функции. Геометрическая интерпретация определенного интеграла.
26. Интегральная сумма Римана. Определенный интеграл Римана. Интегрируемые функции. Геометрическая интерпретация определенного интеграла.
ОПРЕДЕЛЕНИЕ. Если функция f(x) задана всюду на отрезке [ a, b ] и задано разбиение Т, то всякая сумма:
называется интегральной суммой Римана функции f.
1) Любая функция, ограниченная и непрерывная в некотором промежутке, является интегрируемой на этом промежутке. К классу интегрируемых функций относятся также функции, ограниченные на промежутке интегрирования и имеющие на этом промежутке конечное число точек разрыва первого рода.
2) Если функция f(x) интегрируема на промежутке [a,b], то и функция c f(x), где c – константа, интегрируема на этом промежутке.
3) Если функция f(x) интегрируема на промежутке [a,b], то и функция | f(x) | интегрируема на этом промежутке.
4) Если функции f(x) и g(x) интегрируемы на промежутке [a,b], то и их сумма, разность и произведение интегрируемы на этом промежутке.
5) Если функция f(x) интегрируема на промежутке [a,b], то она интегрируема и в любой части этого промежутка.
6) Если функция f(x) интегрируема в каждой части некоторого промежутка, то она интегрируема и на всем промежутке.
7)
Если значения интегрируемой функции
изменить в конечном числе точек на
конечные величины, то интегрируемость
функции не нарушится.
Применительно
к функции f(x) ,
которая не определена в конечном числе
точек промежутка [a,b],
это означает, что ни существование
интеграла ,
ни его величина не зависят от значений,
приписанных функцииf(x)
в точках ее разрыва.
Геометрический смысл определенного интеграла. Если f(x) непрерывна и положительна на [a, b], то интеграл
представляет собой площадь криволинейной трапеции, ограниченной линиями y = 0, x = a, x = b, y = f(x) (см. рис. 5.).