
- •Коротких м. Т. Технология конструкционных материалов и материаловедение: учебное пособие
- •Санкт-Петербург
- •1. Основные характеристики объектов производства
- •1.2 Форма поверхностей деталей
- •1.3 Размеры деталей
- •1.4 Точность размеров и формы поверхностей деталей
- •1.5 Качество поверхности
- •2. Машиностроительные материалы
- •2.1 Сплавы на основе железа
- •Коррозийно-стойкие и жаростойкие стали и сплавы (гост5632-72)
- •Инструментальные стали
- •2.2. Цветные металлы и сплавы
- •2.2.1 Медь и медные сплавы
- •2.2.2 Алюминий и сплавы на его основе
- •Классификация алюминиевых сплавов
- •Деформируемые алюминиевые сплавы, упрочняемые термической обработкой
- •Деформируемые алюминиевые сплавы, не упрочняемые термической обработкой
- •Литейные алюминиевые сплавы
- •2.2.3 Магний и сплавы на его основе
- •Сплавы на основе магния
- •2.2.4 Титан и сплавы на его основе
- •2.2.5 Тугоплавкие металлы и их сплавы
- •2.2.6 Композиционные материалы с металлической матрицей
- •2.3 Конструкционные порошковые материалы
- •2.3.1 Инструментальные порошковые материалы
- •2.4 Общие сведения о неметаллических материалах
- •2.4.1 Пластические массы
- •Состав и свойства пластмасс
- •Термопластичные пластмассы
- •Термореактивные пластмассы
- •Газонаполненные пластмассы
- •Карбоволокниты
- •Бороволокниты
- •Органоволокниты
- •2.4.2 Резиновые материалы
- •Резины общего назначения
- •Резины специального назначения
- •3.2 Обогащение руды
- •3.3 Восстановление металла
- •3.3.1 Термохимическое восстановление металла
- •4. Основы литейного производства
- •4.1 Литье в песчано-глинистые формы
- •4.2 Специальные виды литья
- •4.2.1 Литье в кокиль
- •4.2.2 Центробежное литьё
- •4.2.3 Литье в оболочковые формы
- •4.2.4 Литьё по выплавляемым моделям
- •4.2.5 Литье под давлением
- •5. Методы обработки металлов давлением
- •5.1 Прокатка
- •5.2 Прессование
- •5.3 Волочение
- •5.4 Ковка
- •Технологические возможности
- •5.5 Горячая объемная штамповка
- •5.6 Листовая штамповка
- •6. Сварка
- •6.1 Сварка плавлением
- •Электродуговая сварка
- •Газовая сварка (рис.6.4)
- •6.2 Термомеханическая сварка
- •7. Обработка металлов резанием
- •7.1 Физические основы резания металлов
- •7.2 Оборудование для обработки резанием
- •7.3 Основные процессы обработки материалов резанием
- •7.3.1 Токарная обработка
- •Технологические возможности токарной обработки
- •Выбор управляющих параметров процесса токарной обработки
- •7.3.2 Фрезерная обработка
- •Технологические возможности фрезерования
- •7.3.3 Обработка отверстий резанием
- •7.3.4 Способы обработки резанием
- •8. Абразивная обработка
- •Последовательность выбора управляющих параметров процесса при шлифовании
- •9. Электрофизические и электрохимические методы обработки материалов
- •Классификация методов
- •9.1 Электроэрозионная обработка
- •9.2 Химическая и электрохимическая обработка материалов
- •9.3 Ультразвуковая обработка материалов
- •9.4 Лучевые методы размерной обработки
Выбор управляющих параметров процесса токарной обработки
Повысить производительность процесса можно за счет увеличения любого из управляющих параметров, однако возможности такого увеличения существенно ограничены.
Выбор глубины резания (t)мм
Обычно глубина резания определяется припуском на обработку,т.е. величиной слоя подлежащего удалению (h). Величина этого слоя зависит от метода получения заготовки (от точности этого предшествующего метода). Сила, действующая на инструмент, почти прямо пропорциональна глубине резания, поэтому при определенной глубине резания прочность инструмента может оказаться недостаточной и он сломается. Это обуславливает необходимость многопроходной обработки при наличии значительных припусков. Таким образом, применение более точного метода получения заготовки (уменьшение припусков), может позволить существенно повысить производительность последующей обработки резанием.
При выборе подачи также действует силовое ограничение. Установлено, что сила резания существенно зависит от подачи, поэтому при определенных, больших подачах инструмент может разрушиться. Кроме того, величина подачи определяет шероховатость получаемой поверхности, поэтому ее величина, в случае чистовой обработки, должна выбираться с учетом требуемой шероховатости.
Скорость резания. Скорость резания практически не влияет на силу резания, поэтому инструмент не сломался бы при любом увеличении скорости. Однако при повышении скорости резания существенно повышается температура инструмента, которая может достичь предела его термостойкости. В этих условиях инструмент будет чрезвычайно быстро изнашиваться и выигрыш от повышения производительности будет сведен к нулю экономическими потерями, связанными с затратами на покупку и восстановление инструмента.
Установлены экспериментальные зависимости периода нормальной работы инструмента (периода стойкости) и скорости резания. На основе этих закономерностей ,приводимых в специальной литературе, и определяется оптимальная скорость резания.
Проводится проверка соответствия мощности потребной на резание
Nрез = Pz * V и эффективной мощности станка Nрез < Nэф
Вопросы для самопроверки:
Назовите управляющие параметры процесса резания.
Какой из управляющих параметров практически не влияет на величину силы резания?
Почему нельзя производить обработку на максимальных скоростях резания?
Какие факторы ограничивают величину подачи при точении?
Какие факторы определяют величину припуска , подлежащую удалению при токарной обработке?
Почему режущий инструмент выполняют составным – из инструментального материала и конструкционной стали?
8. Почему все инструменты не изготавливают из сверхтвердых материалов:
алмаза и композита?
Какой инструментальный материал применяется для изготовления дереворежущего инструмента и почему?
Какие поверхности по форме можно получить токарным методом?
Возможно ли токарным способом получить плоскую поверхность?