- •Государственное бюджетное образовательное учреждение
- •Предисловие
- •Тематические разделы дисциплины «Химия»
- •1. 1. Растворы. Способы выражения концентрации растворов
- •Контрольные вопросы
- •Типовые задачи
- •Тестовые задания для самоконтроля
- •Контрольные задания
- •Литература
- •1.2. Введение в титриметрический анализ. Метод нейтрализации
- •Контрольные вопросы
- •Типовые задачи
- •Тестовые задания для самоконтроля
- •Контрольные задания
- •Литература
- •1.3. Оксидиметрия. Перманганатометрия.
- •Контрольные вопросы
- •Типовые задачи
- •Тестовые задания для самоконтроля
- •Контрольные задания
- •Литература
- •1.4. Элементы химической термодинамики
- •Контрольные вопросы
- •Типовые задачи
- •Тестовые задания для самоконтроля
- •Контрольные задания
- •Литература
- •1.5. Энергетика химических процессов
- •Контрольные вопросы
- •Типовые задачи
- •Тестовые задания для самоконтроля
- •Контрольные задания
- •Литература
- •1.6. Коллигативные свойства растворов. Осмос.
- •Контрольные вопросы
- •Типовые задачи
- •Тестовые задания для самоконтроля
- •Контрольные задания
- •Литература
- •1.7. Водородный показатель среды растворов – pH.
- •Контрольные вопросы
- •Типовые задачи
- •Тестовые задания для самоконтроля
- •Контрольные задания
- •Литература
- •1.8. Буферные системы
- •Контрольные вопросы
- •Типовые задачи
- •Тестовые задания для самоконтроля
- •Контрольные задания
- •Литература
- •1.9. Электрохимия. Потенциометрия.
- •Контрольные вопросы
- •Типовые задачи
- •Тестовые задания для самоконтроля
- •Контрольные задания
- •Литература
- •1.10. Окислительно-восстановительные потенциалы и электроды
- •Контрольные вопросы
- •Типовые задачи
- •Тестовые задания для самоконтроля
- •Контрольные задания
- •Литература
- •1.11. Комплексные соединения
- •Контрольные вопрросы
- •Типовые задачи
- •Тестовые задания
- •Контрольные задания
- •Литература
- •1.12. Поверхностные явления. Способы получения и свойства коллоидных растворов.
- •Контрольные вопросы
- •Тестовые задания
- •Контрольные задания
- •Литература
- •1.13. Свойства растворов высокомолекулярных веществ (вмв)
- •Контрольные вопросы
- •Типовые задачи
- •Тестовые задания
- •Контрольные задания
- •Литература
- •1.14. Биогенные элементы
- •Контрольные вопросы
- •Типовые задачи
- •Тестовые задания
- •Темы рефератов
- •Литература
- •2. Инструкция по охране труда и пожарной безопасности для студентов при работе в лабораториях кафедры химии
- •2.1. Общие требования безопасности
- •2.2. Требования безопасности перед началом работы
- •2.3. Требования безопасности во время работы
- •2.4. Требования безопасности в аварийных ситуациях
- •2.5. Требования безопасности по окончании работы
- •3. Кодификатор зачетной работы дисциплины «Химия» для студентов I курса специальностей
- •060101- Лечебное дело; 060103-педиатрия
- •Характеристика зачетной работы и инструкция по ее выполнению
- •Часть 2
- •Часть 3
- •Заключение
- •Глоссарий
- •Ответы на тестовые задания
- •Приложения
- •1. Основные физико-химические константы
- •2. Важнейшие единицы си и их соотношение с единицами других систем
- •3. Приставки для дольных и кратных единиц си
Контрольные задания
11. Константа нестойкости иона [Zn(OH)4 ]2- при 250С равна 7,08·10-16. Составить уравнение вторичной диссоциации комплекса и вычислить G0 процесса.
12. Какой объем раствора AgNO3 с молярной концентрацией эквивалента вещества в растворе 0,2 мольдм потребуется, чтобы при взаимодействии его с раствором калия гексацианоферрат (III) образовалось 5,36 г осадка комплексной соли?
13. Определить заряд комплексного иона и координационное число комплексообразователя, дописать ионы внешней сферы и назвать соединение:
1) [ Ti+4(NO3)2 (H2O)4]x
2) [Co3+(Cl)2(H2O)(NH3)3]х
3) [Sn4+(Вr)6]х
14. Определить степень окисления комплексообразователя и назвать соединение:
1) Na2[Cox(Cl)5(NH3)]
2) К[Agх(CN)2]
3) [Сrx(NO3)2(H2O)4](OH)
Литература
Общая химия. Биофизическая химия. Химия биогенных элементов: Учеб. для вузов / Ю. А. Ершов, В.А. Попков, А.С. Берлянд и др.; Под ред. Ю.А. Ершова. – 5-е изд., стер. – М.: Высш.шк., 2005. – С. 191 – 203.
Практикум по общей химии. Биофизическая химия. Химия биогенных элементов: Учеб. пособие для студентов медицинских спец. вузов / Ю.А. Ершов, А.М. Кононов, С.А. Пузаков и др.; Под ред. Ю.А. Ершова, В.А. Попкова. – М. : Высш. шк., 2008. – С.115-122.
1.12. Поверхностные явления. Способы получения и свойства коллоидных растворов.
Коллоидно-дисперсные системы
Коллоидная химия – наука, изучающая физико-химические свойства гетерогенных высокодисперсных систем в твердом состоянии и в растворах.
Дисперсной системой называется система, в которой одно вещество в более или менее раздробленном (дисперсном) состоянии равномерно распределено в массе другого вещества.
Раздробленное вещество в этом случае называют дисперсной фазой (ДФ), а среду, в которой оно распределено – дисперсионной средой (ДС).
Степень дисперсности определяется величиной, обратной диаметру частиц.
По степени дисперсности дисперсные системы классифицируют на:
Грубодисперсные (диаметр частиц больше 10-7 см) – не проходят через тонкие бумажные фильтры, быстро оседают, видимы в обычный микроскоп.
Коллоидно-дисперсные (диаметр частиц 10-5 – 10-7 см) – проходят через бумажные фильтры, но задерживаются в ультрафильтрах, видимы в ультрамикроскоп. Структурной единицей является коллоидная частица – мицелла
Молекулярно-дисперсные ,истинные растворы (диаметр частиц меньше10-7 см) – дискретными единицами в них являются молекулы или ионы. Образуются самопроизвольно.
Классификация коллоидно - дисперсных систем
1. По степени взаимодействия дисперсной фазы и дисперсионной среды различают:
а) Лиофобные коллоиды - системы со слабым взаимодействием между дисперсной фазой и дисперсионной средой.
б) Лиофильные коллоиды – системы с сильным взаимодействием между дисперсной фазой и дисперсионной средой.
Если ДС является вода, то системы соответственно называются гидрофобными и гидрофильными.
Лиофильные системы образуются самопроизвольно, следовательно, термодинамически устойчивы. Как правило, они представляют собой растворы полимерных органических соединений (белки, полисахариды).
Лиофобные системы являются термодинамически неустойчивыми. Они образуются из неорганических соединений (солей, оснований).
По степени взаимодействия частиц дисперсной фазы между собой различают:
а) Золи – бесструктурные коллоидные растворы, в которых частицы ДФ слабо взаимодействуют между собой и свободно передвигаются друг относительно друга. По внешнему виду золи напоминают истинные растворы.
б) Гели – структурированные коллоидные растворы, в которых частицы ДФ связаны между собой с образованием пространственной структуры типа каркасов. В них коллоидные частицы малоподвижны и способны совершать только колебательные движения. По внешнему виду гели желеобразны.
Строение коллоидных частиц
В коллоидных системах структурной единицей является коллоидная частица или мицелла.
Строение коллоидных частиц и возникновение на них заряда объясняет мицеллярная теория коллоидных систем в соответствии с которой заряд на коллоидных частицах возникает либо за счет ионизации молекул, находящихся на поверхности твердой фазы, либо в результате избирательной адсорбции на твердой фазе.
Рассмотрим второй случай. Получим мицеллу СuS в K2S в результате реакции обмена
СuС12 + K2S (избыток) = СuS + 2KС1
Нерастворимый продукт реакции СuS является агрегатом мицеллы и находится в избытке раствора K2S, выполняющего роль стабилизатора. На твердой кристаллической поверхности осадка в соответствии с правилом Панета-Фаянса будут адсорбироваться ионы стабилизатора S2–, достраивая кристаллическую решетку и сообщая частицам отрицательный заряд.Ионы S2– называются потенциалопределяющими ионами. Агрегат и потенциалопределяющие ионы составляют ядро мицеллы. К отрицательному заряду будут притягиваться противоионы K+, образуя плотный слой противоионов. Потенциалопределяющие ионы и противоионы плотного слоя вместе образуют адсорбционный слой. Адсорбционный слой вместе с агрегатом составляют гранулу (или частицу). Гранула заряжена, её заряд определятся знаком и величиной заряда потенциалопределяющих ионов. Часть противоионов, не вошедших в адсорбционный слой, образуют диффузный слой. Гранула и диффузный слой составляют мицеллу. Мицелла таким образом электронейтральна.
Составим формулу мицеллы СuS в K2S:
Устойчивость коллоидных растворов
Устойчивость дисперсных систем характеризует способность дисперсной фазы сохранять состояние равномерного распределения частиц дисперсной фазы во всем объеме дисперсионной среды.
В дисперсных системах различают седиментационную (кинетическую) и агрегативную устойчивость.
Седиментационная устойчивость характеризует способность частиц дисперсной фазы находиться во взвешенном состоянии и не оседать под действием силы тяжести.
Агрегативная устойчивость характеризует способность частиц дисперсной фазы противодействовать их слипанию между собой за счет адсорбционных сил.
Коллоидные растворы седиментационно устойчивые системы, что обусловлено малыми размерами частиц, но агрегативно неустойчивы. В них самопроизвольно идут процессы слипания частиц, поэтому такие системы не могут существовать без стабилизаторов.
Биологические жидкости – кровь, плазма, лимфа, моча – представляют коллоидные растворы. О состоянии организма можно судить по многим показателям этих жидкостей, и прежде всего, крови. Наличие патологических процессов сопровождается изменением количества форменных элементов крови (эритроцитов, лейкоцитов и др.), скорости оседания эритроцитов (СОЭ), свертываемости крови. Все эти свойства связаны с устойчивостью биологических жидкостей, поэтому изучение устойчивости коллоидных растворов очень важно в медицинской практике.