 
        
        - •Липиды.
- •1.Важнейшие липиды тканей человека.Резеврные и протоплазматические липиды.
- •2.Классификация липидов.
- •3.Жирные кислоты, хар-ные для липидов тканей человека.
- •4.Эссенциальные жк-незаменимые факторы питания липидной природы.
- •5.Триацилглицерины.Строение, био функции.
- •6. Холестерин, биологическая роль, строение.
- •7. Основные фосфолипиды тканей человека, строение глицеролфосфолипидов, ф-ции.
- •8. Сфинголипиды, строение, биологическая роль.
- •9. Гликолипиды тканей чел. Гликоглицеролипиды и гликосфинголипиды. Ф-ции гликолипидов
- •10.Пищевые жиры и их переваривание.Гидролиз нейтрального жира в жкт,роль липаз.
- •11. Гидролиз фосфолипидов в жкт, фосфолипазы ( первая часть не оч… простите)
- •12. Желчные кислоты, строение, роль в обмене липидов
- •13. Всасывание продуктов переваривания липидов
- •14. Нарушение переваривания и всасывания липидов
- •15. Ресинтез триацилглицеринов в стенке кишечника
- •16) Образование хиломикронов и транспорт пищевых жиров. Липопротеин-липаза.
- •17)Транспорт жирных кислот альбуминами крови.
- •18)Биосинтез жиров в печени
- •20)Взаимопревращения разных классов липопротеинов , физиологический смысл процессов
- •Вопрос 26. Обмен жирных кислот, -окисление как специфический путь катаболизма жирных кислот, химизм, ферменты, энергетика.
- •Вопрос 27. Судьба ацетил-КоА
- •Вопрос 28. Локализация ферментов -окисления жирных кислот. Транспорт жирных кислот в митохондрии. Карнитин-ацилтрансфераза.
- •Вопрос 29. Физиологическое значение процессов катаболизма жирных кислот.
- •Вопрос 30. Биосинтез пальмитиновой жирной кислоты, химизм, жирнокислотная синтетаза.
- •Вопрос 32. Биосинтез ненасыщенных кислот. Полиненасыщенные жирные кислоты.
- •Вопрос 33. Биосинтез и использование ацетоуксусной кислоты, физиологическое значение процессов. К кетоновым телам относят три вещества: β-гидроксибутират, ацетоацетат и ацетон.
- •Синтез кетоновых тел:
- •Окисление кетоновых тел:
- •Вопрос 34. Обмен стероидов.Холестерин как предшественник других стероидов.Биосинтез холестерина. Обмен стероидов
- •Вопрос 35.Регуляция биосинтеза холестерина, транспорт холестерина кровью.
- •36. Роль лпнп и лпвп в транспорте холестерина.
- •37. Превращение холестерина в желчные кислоты, выведение из организма х и жк.
- •38. Конъюгация желчных кислот, первичные и вторичные жк
- •39. Гиперхолестеринэмия и ее причины.
- •40. Биохимические основы развития атеросклерохза. Факторы риска.
- •41. Биохимические основы лечения гиперхолестеролемии и атеросклероза
- •42. Роль омега-3 жирных кислот в профилактике атеросклероза (тупой! Тупой вопрос! Будь он проклят. Ничего нормального не нашел…что-то нарыл в интернете)
- •43. Механизм возникновения желчнокаменной болезни
- •44. Биосинтез глицеролфосфолипидов в стенке кишечника и тканях (тоже как-то не очень…что нашел, пардон)
- •46. Катаболизм сфинголипидов. Сфинголипидозы. Биосинтез сфинголипидов.
- •47. Обмен безазотистого остатка аминокислот, гликогенные и кетогенные аминокислоты
- •48. Синтез глюкозы из глицерина и аминокислот.
- •49. Глюкокортикостероиды, строение, функции, влияние на обмен ве¬ществ. Кортикотропин. Нарушение обмена при гипо- и гиперкортицизме (стероидном диабете).
- •50. Биосинтез жиров из углеводов
- •51. Регуляция содержания глюкозы в крови
- •52. Инсулин, строение и образование из проинсулина. Изменение концентрации в зависимости от режима питания
- •53. Роль инсулина в регуляции обмена углеводов, липидов и аминокислот.
- •54. Сахарный диабет. Важнейшие изменения гормонального статуса и обмена веществ.
- •55. Патогенез основных симптомов сахарного диабета.
- •56. Биохимические механизмы развития диабетической комы.(я не уверена что правильно)
- •57. Патогенез поздних осложнений сахарного диабета (микро- и макроангиопатии, ретинопатии,нефропатия,катаракта)
16) Образование хиломикронов и транспорт пищевых жиров. Липопротеин-липаза.
Жиры, образовавшиеся в результате ресинтеза в клетках слизистой оболочки кишечника, упаковываются в ХМ. Основной апопротеин в составе ХМ - белок апоВ-48. Этот белок закодирован в том же гене, что и белок ЛПОНП - В-100 (табл. 8-5), который синтезируется в печени. В кишечнике в результате посттранскрипционных превращений "считывается" последовательность мРНК, которая кодирует только 48% от длины белка В-100, поэтому этот белок называется апоВ-48. Белок апоВ-48 синтезируется в шероховатом ЭР и там же гликозилируется. Затем в аппарате Гольджи происходит формирование ХМ, называемых "незрелыми". По механизму экзоцитоза они выделяются в хилус, образующийся в лимфатической системе кишечных ворсинок, и через главный грудной лимфатический проток попадают в кровь. В лимфе и крови с ЛПВП на ХМ переносятся
Таблица 8-5. Липопротеины - транспортные формы липидов
| Типы липопротеинов | Хиломикроны (ХМ) | ЛПОНП | ЛППП | ЛПНП | ЛПВП | 
| Состав, % | 
 | 
 | 
 | 
 | 
 | 
| Белки | 2 | 10 | 11 | 22 | 50 | 
| ФЛ | 3 | 18 | 23 | 21 | 27 | 
| ХС | 2 | 7 | 8 | 8 | 4 | 
| ЭХС | 3 | 10 | 30 | 42 | 16 | 
| ТАГ | 85 | 55 | 26 | 7 | 3 | 
| Функции | Транспорт липидов из клеток кишечника(экзогенных липидов) | Транспорт липидов, синтезируемых в печени (эндогенных липидов) | Промежуточная форма превращения ЛПОНП в ЛПНП под действием фермента ЛП-липазы | Транспорт холестерола в ткани | Удаление избытка холестерола из клеток и других липопротеинов. Донор апопротеинов А, С-П | 
| Место образования | Эпителий тонкого кишечника | Клетки печени | Кровь | Кровь (из ЛПОНП и ЛППП) | Клетки печени - ЛПВП-пред-шественники | 
| Плотность, г/мл | 0,92-0,98 | 0,96-1,00 | 
 | 1,00-1,06 | 1,06-1,21 | 
| Диаметр частиц, нМ | Больше 120 | 30-100 | 
 | 21-100 | 7-15 | 
| Основные аполипопротеины | В-48 С-П Е | В-100 С-П Е | В-100 Е | В-100 | A-I С-II Е | 
Примечания: ФЛ - фосфолипиды; ХС - холестерол; ЭХС - эфиры холестерола; ТАГ - триацилглицеролы. Функции апопротеинов
- В-48 - основной белок ХМ; 
- В-100 - основной белок ЛПОНП, ЛПНП, ЛППП, взаимодействует с рецепторами ЛПНП; 
- С-II - активатор ЛП-липазы, переносится с ЛПВП на ХМ и ЛПОНП в крови; 
- Е - взаимодействует с рецепторами ЛПНП; 
- A-I - активатор фермента лецитингхолестеролацилтрансферазы (ЛХАТ). 
апопротеины Е (апоЕ) и С-П (апоС-П); ХМ превращаются в "зрелые". ХМ имеют довольно большой размер, поэтому после приёма жирной пищи они придают плазме крови опалесцирующий, похожий на молоко, вид. ХМ транспортируют жир к различным тканям, где он утилизируется, поэтому концентрация ХМ в крови постепенно снижается, и плазма опять становится прозрачной. ХМ исчезают из крови в течение нескольких часов.
При редком наследственном заболевании - дефекте гена апопротейна В - нарушается синтез белков апоВ-100 в печени и апоВ-48 в кишечнике. В результате в клетках слизистой оболочки кишечника не формируются ХМ, а в печени - ЛПОНП. В клетках этих органов накапливаются капельки жира. Такое заболевание называется абеталипопротеинемия, так как второе название ЛПОНП - пре-β-липопротеины.
Действие липопротеинлипазы на ХМ. В крови триацилглицеролы, входящие в состав зрелых ХМ, гидролизуются ферментом липопротеин-липазой, или ЛП-липазой (рис. 8-20). ЛП-липа-за связана с гепарансульфатом (гетерополисаха-ридом), находящимся на поверхности эндотелиальных клеток, выстилающих стенки капилляров кровеносных сосудов. ЛП-липаза гидролизует молекулы жиров до глицерола и 3 молекул жирных кислот. На поверхности ХМ различают 2 фактора, необходимых для активности ЛП-липазы - апоС-П и фосфолипиды. АпоС-П активирует этот фермент, а фосфолипиды участвуют в, связывании фермента с поверхностью ХМ.
ЛП-липаза синтезируется в клетках многих тканей: жировой, мышечной, в лёгких, селезёнке, клетках лактирующей молочной железы. Изоферменты ЛП-липазы в разных тканях отличаются по значению Кm: ЛП-липаза жировой ткани имеет в 10 раз более высокое значение Кm, чем, например, ЛП-липаза сердца, поэтому гидролиз жиров ХМ в жировой ткани происходит в абсорбтивный период. Жирные кислоты поступают в адипоциты и используются для синтеза жиров. В постабсорбтивном состоянии, когда количество жиров в крови снижается, ЛП-липаза сердечной мышцы продолжает гидролизовать жиры в составе ЛПОНП, которые присутствуют в крови в небольшом количестве, и жирные кислоты используются этой тканью как источники энергии, даже при низкой концентрации жиров в крови. ЛП-липазы нет в печени, но на поверхности клеток этого органа имеется другой фермент - печёночная липаза, не действующая на зрелые ХМ, но гидролизующая жиры в ЛППП, которые образуются из ЛПОНП.
