
- •Липиды.
- •1.Важнейшие липиды тканей человека.Резеврные и протоплазматические липиды.
- •2.Классификация липидов.
- •3.Жирные кислоты, хар-ные для липидов тканей человека.
- •4.Эссенциальные жк-незаменимые факторы питания липидной природы.
- •5.Триацилглицерины.Строение, био функции.
- •6. Холестерин, биологическая роль, строение.
- •7. Основные фосфолипиды тканей человека, строение глицеролфосфолипидов, ф-ции.
- •8. Сфинголипиды, строение, биологическая роль.
- •9. Гликолипиды тканей чел. Гликоглицеролипиды и гликосфинголипиды. Ф-ции гликолипидов
- •10.Пищевые жиры и их переваривание.Гидролиз нейтрального жира в жкт,роль липаз.
- •11. Гидролиз фосфолипидов в жкт, фосфолипазы ( первая часть не оч… простите)
- •12. Желчные кислоты, строение, роль в обмене липидов
- •13. Всасывание продуктов переваривания липидов
- •14. Нарушение переваривания и всасывания липидов
- •15. Ресинтез триацилглицеринов в стенке кишечника
- •16) Образование хиломикронов и транспорт пищевых жиров. Липопротеин-липаза.
- •17)Транспорт жирных кислот альбуминами крови.
- •18)Биосинтез жиров в печени
- •20)Взаимопревращения разных классов липопротеинов , физиологический смысл процессов
- •Вопрос 26. Обмен жирных кислот, -окисление как специфический путь катаболизма жирных кислот, химизм, ферменты, энергетика.
- •Вопрос 27. Судьба ацетил-КоА
- •Вопрос 28. Локализация ферментов -окисления жирных кислот. Транспорт жирных кислот в митохондрии. Карнитин-ацилтрансфераза.
- •Вопрос 29. Физиологическое значение процессов катаболизма жирных кислот.
- •Вопрос 30. Биосинтез пальмитиновой жирной кислоты, химизм, жирнокислотная синтетаза.
- •Вопрос 32. Биосинтез ненасыщенных кислот. Полиненасыщенные жирные кислоты.
- •Вопрос 33. Биосинтез и использование ацетоуксусной кислоты, физиологическое значение процессов. К кетоновым телам относят три вещества: β-гидроксибутират, ацетоацетат и ацетон.
- •Синтез кетоновых тел:
- •Окисление кетоновых тел:
- •Вопрос 34. Обмен стероидов.Холестерин как предшественник других стероидов.Биосинтез холестерина. Обмен стероидов
- •Вопрос 35.Регуляция биосинтеза холестерина, транспорт холестерина кровью.
- •36. Роль лпнп и лпвп в транспорте холестерина.
- •37. Превращение холестерина в желчные кислоты, выведение из организма х и жк.
- •38. Конъюгация желчных кислот, первичные и вторичные жк
- •39. Гиперхолестеринэмия и ее причины.
- •40. Биохимические основы развития атеросклерохза. Факторы риска.
- •41. Биохимические основы лечения гиперхолестеролемии и атеросклероза
- •42. Роль омега-3 жирных кислот в профилактике атеросклероза (тупой! Тупой вопрос! Будь он проклят. Ничего нормального не нашел…что-то нарыл в интернете)
- •43. Механизм возникновения желчнокаменной болезни
- •44. Биосинтез глицеролфосфолипидов в стенке кишечника и тканях (тоже как-то не очень…что нашел, пардон)
- •46. Катаболизм сфинголипидов. Сфинголипидозы. Биосинтез сфинголипидов.
- •47. Обмен безазотистого остатка аминокислот, гликогенные и кетогенные аминокислоты
- •48. Синтез глюкозы из глицерина и аминокислот.
- •49. Глюкокортикостероиды, строение, функции, влияние на обмен ве¬ществ. Кортикотропин. Нарушение обмена при гипо- и гиперкортицизме (стероидном диабете).
- •50. Биосинтез жиров из углеводов
- •51. Регуляция содержания глюкозы в крови
- •52. Инсулин, строение и образование из проинсулина. Изменение концентрации в зависимости от режима питания
- •53. Роль инсулина в регуляции обмена углеводов, липидов и аминокислот.
- •54. Сахарный диабет. Важнейшие изменения гормонального статуса и обмена веществ.
- •55. Патогенез основных симптомов сахарного диабета.
- •56. Биохимические механизмы развития диабетической комы.(я не уверена что правильно)
- •57. Патогенез поздних осложнений сахарного диабета (микро- и макроангиопатии, ретинопатии,нефропатия,катаракта)
53. Роль инсулина в регуляции обмена углеводов, липидов и аминокислот.
Действие инсулина
Так или иначе инсулин затрагивает все виды обмена веществ во всём организме. Однако в первую очередь действие инсулина касается именно обмена углеводов. Основное влияние инсулина на углеводный обмен связано с усилением транспорта глюкозы через клеточные мембраны. Активация инсулинового рецептора запускает внутриклеточный механизм, который напрямую влияет на поступление глюкозы в клетку путём регуляции количества и работы мембранных белков, переносящих глюкозу в клетку.
В наибольшей степени от инсулина зависит транспорт глюкозы в двух типах тканей: мышечная ткань (миоциты) и жировая ткань (адипоциты) — это т. н. инсулинозависимые ткани. Составляя вместе почти 2/3 всей клеточной массы человеческого тела, они выполняют в организме такие важные функции как движение, дыхание, кровообращение и т. п., осуществляют запасание выделенной из пищи энергии.
54. Сахарный диабет. Важнейшие изменения гормонального статуса и обмена веществ.
Сахарный диабет - заболевание, которое проявляется высоким уровнем сахара в крови по причине недостаточного воздействия инсулина. Инсулин - это гормон, выделяемый поджелудочной железой, а точнее бета-клетками островков Лангерганса. При сахарном диабете он или вообще отсутствует (диабет I типа, или инсулинзависимый диабет), или же клетки организма недостаточно реагируют на него (диабет II типа, или инсулиннезависимый диабет). Инсулин - гормон, регулирующий обмен веществ, прежде всего углеводов (сахаров), но также жиров и белков. При сахарном диабете вследствие недостаточного воздействия инсулина возникает сложное нарушение обмена веществ, повышается содержание сахара в крови (гипергликемия), сахар выводится с мочой (глюкозурия), в крови появляются кислые продукты нарушенного сгорания жиров - кетоновые тела (кетоацидоз).
55. Патогенез основных симптомов сахарного диабета.
Глюкоза – это источник энергии, главнейший метаболит в человеческом организме. Глюкоза поступает в наш организм с пищей, затем всасывается в тонком кишечнике, немедленно поступая в печени или скелетные мышцы, где глюкоза запасается в виде особого вещества - гликогена. Уровень глюкозы контролируется специальным гормоном – инсулином. Инсулин продуцируется бета-клетками эндокринного аппарата поджелудочной железы. Роль инсулина в организме исключительна. Инсулин регулирует весь энергообмен, под его воздействием глюкоза и аминокислоты проникают внутрь клеток. В жировых клетках под действием инсулина синтезируется ДНК, влияет на рост и дифференцировку других клеток, усиливает синтез белков.
При недостаточности инсулина возникает сахарный диабет 1-го типа, проявления которого наблюдаются при разрушении более 80% клеток Лангерганса поджелудочной железы.
При нарушении чувствительности тканей к инсулину развивается сахарный диабет 2-го типа. Инсулинорезистентность проявляется даже в условиях нормального уровня инсулина. Глюкоза, не имея возможности проникнуть в клетку, циркулирует и накапливается в крови. В связи с возникшими нарушениями происходит накопление сорбитола, гликозилированного гемоглобина и гликозаминогликанов. Данные вещества поражают различные клетки организма: сорбитол вызывает катаракту, микроангиопатию и нейропатию, а поражению суставов способствуют гликозамингликаны. Сердечно-сосудистые нарушения, мышечная слабость развивается из-за активного распада белков.
Усиление перекисного окисления липидов и последующее накопление токсических веществ приводит к повышению кетоновых тел.