Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

21-40

.pdf
Скачиваний:
14
Добавлен:
20.03.2016
Размер:
413.46 Кб
Скачать

невозможность полного соответствия потребностям конкретной организации; низкие временные затраты на приобретение и установку; относительно низкая стоимость;

необходимость приобретения лицензии на каждое внедряемое рабочее место.

2) Индивидуально разрабатываемые СЭДО:

максимально персонифицированная система; большие временные затраты; высокая стоимость разработки;

сопутствующие расходы: затраты на обучение сотрудников, покупку нового оборудования и программного обеспечения.

3) Комбинированные СЭДО:

базовая платформа, к которой разрабатываются необходимые дополнительные модули;

полное соответствие нуждам предприятия; небольшие временные затраты на разработку и внедрение;

стоимость включает: цену базовой платформы и стоимость индивидуальной доработки, зависящей от сложности заказа;

передача заказчику прав на продукт; простота освоения и использования; полная локализация; удобный интерфейс;

взаимодействие с существующими офисными приложениями.

35. Технологический процесс обработки данных.

Технологический процесс обработки данных - это комплекс взаимосвязанных операций по преобразованию информации в процессе решения функциональных задач на ЭВМ, начиная с момента возникновения информации и до получения на ее основе исходных данных. Технологическая операция - действие или комплекс взаимосвязанных действий над информацией в процессе ее перетворення.

С точки зрения предметной направленности и функционального распределения обязанностей исполнителей технологические процессы классифицируются на послеоперационные (когда каждый исполнитель выполняет отдельные операции: подготовка данных, контроль данных, арифметическая обработка данных и т.д.), попредметно (когда за исполнителем или исполнителями закрепляются все операции по преобразованию информации на определенном участке) и смешанные. В современных условиях наиболее распространенным является второй вид.

В условиях использования вычислительных сетей практикуются технологии с распределенной обработкой данных, позволяющих на независимых но взаимодействующих между собой машинах обрабатывать локальные данные. Время обработка данных может осуществляться централизованно и децентрализованно .

36. Геоинформационные системы.

Геоинформационная система (географическая информационная система, ГИС) — система сбора, хранения, анализа и графической визуализации пространственных[1] (географических) данных и связанной с ними информации о необходимых объектах.

Понятие геоинформационной системы также используется в более узком смысле — как инструмента (программного продукта), позволяющего пользователям искать, анализировать и редактировать как цифровую карту местности, так и дополнительную информацию об объектах[2].

Геоинформационная система может включать в свой состав пространственные базы данных (в том числе, под управлением универсальных СУБД), редакторы растровой и векторной графики, различные средства пространственного анализа данных. Применяются в картографии, геологии, метеорологии, землеустройстве, экологии, муниципальном управлении, транспорте, экономике, обороне и многих других областях. Научные, технические, технологические и прикладные аспекты проектирования, создания и использования геоинформационных систем изучаются геоинформатикой.

Классификация

По территориальному охвату геоинформационные системы подразделяют на глобальные (англ. global), субконтинентальные, национальные, зачастую имеющие статус государственных, региональные (regional), субрегиональные, локальные, или местные (local). В некоторых случаях, такие территориальные ГИС могут быть размещены в открытом доступе в сети Интернет и называются геопорталами.

По предметной области информационного моделирования выделяются городские (муниципальные) (urban GIS), недропользовательские, горно-геологические, природоохранные (environmental) и т. п.; среди них особое наименование, как особо широко распространѐнные, получили земельные информационные системы.

Также геоинформационные системы могут быть классифицированы по проблемной ориентации — решаемым научным и прикладным задачам. Таковыми задачами могут быть инвентаризация ресурсов (в том числе кадастр), анализ, оценка, мониторинг, управление и планирование, поддержка принятия решений, геомаркетинг. Кроме того, интегрированные геоинформационные системы совмещают функциональные возможности и систем цифровой обработки изображений (данных дистанционного зондирования) в единой интегрированной среде.

Различают также:

полимасштабные, или масштабно-независимые геоинформационные системы (multiscale), основанные на множественных, или полимасштабных представлениях пространственных объектов, обеспечивая графическое или картографическое

воспроизведение данных на любом из избранных уровней масштабного ряда на основе единственного набора данных с наибольшим пространственным разрешением;

пространственно-временные геоинформационные системы (spatio-temporal), оперирующие пространственно-временными данными.

37.Технологический процесс защиты данных.

Система защиты информации - это совокупность организационных, административных и технологических мер, программно технических средств, правовых и морально-этических норм, направленных на противодействие угрозам нарушителей с целью сведения до минимума возможного ущерба пользователям владельцам системы.

Учитывая важность, масштабность и сложность решения проблемы сохранности и безопасности информации, рекомендуется разрабатывать архитектуру безопасности в несколько этапов:

-анализ возможных угроз;

-разработка системы защиты;

-реализация системы защиты;

-сопровождение системы защиты.

Программные средства и методы зашиты активнее и шире других применяются для защиты информации в персональных компьютерах и компьютерных сетях, реализуя такие функции защиты, как разграничение и контроль доступа к ресурсам; регистрация и анализ протекающих процессов, событий, пользователей; предотвращение возможных разрушительных воздействий на ресурсы; криптографическая защита информации; идентификация и аутентификация пользователей и процессов и др.

В настоящее время наибольший удельный вес в этой группе мер в системах обработки экономической информации составляют специальные пакеты программ или отдельные программы, включаемые в состав программного обеспечения с целью реализации задач по защите информации. Технологические средства защиты информации - это комплекс мероприятий, органично встраиваемых в технологические процессы преобразования данных.

Среди них:

-создание архивных копий носителей;

-ручное или автоматическое сохранение обрабатываемых файлов во внешней

памяти компьютера;

-регистрация пользователей компьютерных средств в журналах;

-автоматическая регистрация доступа пользователей к тем или иным ресурсам;

-разработка специальных инструкций по выполнению всех технологических процедур и др.

38. Глобальные системы.

// Нет уверенности, что это то, что нужно

Глобальная компьютерная сеть, ГКС (англ. Wide Area Network, WAN) — компьютерная сеть, охватывающая большие территории и включающая в себя большое число компьютеров.

ГКС служат для объединения разрозненных сетей так, чтобы пользователи и компьютеры, где бы они ни находились, могли взаимодействовать со всеми остальными участниками глобальной сети.

Некоторые ГКС построены исключительно для частных организаций, другие являются средством коммуникации корпоративных ЛВС с сетью Интернет или посредством Интернет с удалѐнными сетями, входящими в состав корпоративных. Чаще всего ГКС опирается на выделенные линии, на одном конце которых маршрутизатор подключается к ЛВС, а на другом коммутатор связывается с остальными частями ГКС. Основными используемыми протоколами являются TCP/IP, SONET/SDH, MPLS, ATM и Frame relay. Ранее был широко распространѐн протокол X.25, который может по праву считаться прародителем Frame relay.

39. Графическое изображение технологического процесса.

Графическая информация на экране монитора компьютера образуется из точек (пикселей). Суммарное количество точек на экране называют разрешающей способностью монитора. Единицей измерения в этом случае является количество точек на дюйм (dpi). Разрешающая способность современных дисплеев обычно равна 1024 точкам по горизонтали и 768 точкам по вертикали, т.е. 786432 точек.

Количество отражаемых цветов зависит от возможностей видеоадаптера и дисплея. Оно может меняться программно. Каждый цвет представляет одно из состояний точки на экране. Цветные изображения имеют режимы: 16, 256, 65536 (high color) и 16 777 216

цветов (true color).

Любое компьютерное изображение состоит из набора графических примитивов, которые отражают некоторый графический элемент. Примитивами могут также быть алфавитно-цифровые и любые другие символы.

Совокупность графических примитивов, которой можно манипулировать, называют сегментом отображаемой информации. Наряду с сегментом часто используется понятие графический объект.

Графический объект - это множество примитивов, обладающих одинаковыми визуальными свойствами и статусом, идентифицированных одним именем.

Графические изображения технологических процессов на экране компьютера образуют графические интерфейсы WIMPD (Windows, Menu, Pointing Device) – окна, меню, указывающее устройство.

В ОС фирмы Microsoft Windows, используемой для IBM-совместимых компьютеров, впервые был применѐн графический интерфейс пользователей. Его появление и широкое распространение было вызвано тем, что пользователям хотелось иметь инструмент (интерфейс), позволяющий легко освоить основные процедуры и комфортно работать на компьютере.

Так появился графический интерфейс пользователя. Основное преимущество его использования в операционной системе заключается в том, что он позволяет создавать одинаковые графические изображения для всех устройств, поддерживаемых ОС,

реализуя принцип WYSIWYG (What You See Is What You Get – что видим, то и получаем).

Графический пользовательский интерфейс (Graphical user interface, GUI) или графический интерфейс пользователя - это графическая среда организации взаимодействия пользователя с вычислительной системой, предполагающая стандартное использование основных элементов диалога пользователя с ЭВМ.

Графический интерфейс позволяет управлять поведением вычислительной системы через визуальные элементы управления: окна, списки, кнопки, гиперссылки и полосы прокрутки. Он включает такие понятия, как: рабочий стол, окна, пиктограммы, элементы графического интерфейса, манипуляция указывающим устройством (мышь). Эти визуальные элементы создаются, отображаются и обрабатываются с помощью графических приложений.

Графические приложения – приложения, в которых используются такие графические элементы, как: псевдокнопки, графический указатель, кнопка и линейка прокрутки.

С помощью графического интерфейса пользователь ―общается‖ с компьютером. Такой метод общения или режим называют диалоговым.

Диалоговый режим – способ взаимодействия пользователя с ЭВМ, при котором

происходит непосредственный и двухсторонний обмен информацией, командами или инструкциями между человеком и ЭВМ. Различают активные и пассивные диалоговые режимы.

Пользователь, работает с рабочим столом, окнами и объектами в них. При этом операционная система выполняет все его команды. В процессе работы она позволяет пользователю создавать другие окна и ярлыки, использовать возможности оперирования с окнами и их содержимым и др. Например, пользователь может отображать окно во весь экран, уменьшить его до нужного размера и даже до пиктограммы. При этом все действия пользователь выполняет с помощью координатного манипулятора мышь, который стал основным инструментом управления компьютером.

Так, например, кнопки предназначены для выполнения присвоенных им действий. Управление их действием осуществляется путѐм нажатия на них мышью.

40. Концепция хранилища данных.

Принято считать, что у истоков концепции ХД стоял технический директор компании Prism Solutions Билл Инмон, который в начале 1990-х гг. опубликовал ряд работ, ставших основополагающими для последующих исследований в области аналитических систем.

В основе концепции ХД лежат следующие положения:

интеграция и согласование данных из различных источников, таких как обычные системы оперативной обработки, базы данных, учетные системы, офисные документы, электронные архивы, расположенные как внутри предприятия, так и во внешнем окружении;

разделение наборов данных, используемых системами выполнения транзакций и СППР.

Инмон дал следующее определение ХД: предметно-ориентированный, интегрированный, неизменяемый и поддерживающий хронологию набор данных, предназначенный для обеспечения принятия управленческих решений.

Под предметной ориентированностью в данном случае подразумевается, что ХД должно разрабатываться с учетом специфики конкретной предметной области, а не аналитических приложений, с которыми его предполагается использовать. Структура ХД должна отражать представления аналитика об информации, с которой ему приходится работать.

Интегрированность означает, что должна быть обеспечена возможность загрузки в ХД информации из источников, поддерживающих различные форматы данных и созданных в различных приложениях — учетных системах, базах данных, электронных таблицах и других офисных приложениях, поддерживающих структурированность данных (например, текстовые файлы с разделителями). При этом данные, допускающие различный формат (например, числа, дата и время), в процессе загрузки должны быть преобразованы к единому представлению. Кроме того, очень важно проверить загружаемые данные на целостность и непротиворечивость, обеспечить необходимый

уровень их обобщения (агрегирования). Объем данных в хранилище должен быть достаточным для эффективного решения аналитических задач, поэтому в ХД может накапливаться информация за несколько лет и даже десятилетий.

Принцип неизменчивости предполагает, что, в отличие от обычных систем оперативной обработки данных, в ХД данные после загрузки не должны подвергаться каким-либо изменениям, за исключением добавления новых данных.

И наконец, поддержка хронологии означает соблюдение порядка следования записей, для чего в структуру ХД вводятся ключевые атрибуты Дата и Время. Кроме того, если физически упорядочить записи в хронологическом порядке, например в порядке возрастания атрибута Дата, можно уменьшить время выполнения аналитических запросов.

Использование концепции ХД в СППР и анализе данных способствует достижению таких целей, как:

своевременное обеспечение аналитиков и руководителей всей информацией, необходимой для выработки обоснованных и качественных управленческих решений;

создание единой модели представления данных в организации; создание интегрированного источника данных, предоставляющего удобный доступ к

разнородной информации и гарантирующего получение одинаковых ответов на одинаковые запросы из различных аналитических приложений.