
- •Биохимия Электронный дидактический комплекс (эдк)
- •Физическая химия вода
- •Активная реакция водных растворов
- •Ионное произведение воды. Водородный показатель
- •Методы определения рН среды
- •Роль активной реакции среды в биологических процессах
- •Буферные pacтворы, состав, механизм действия
- •Буферная емкость
- •Биологическое значение буферных систем
- •Коллоидная химия
- •Классификация дисперсных систем
- •Поверхностные явления
- •Адсорбция
- •Коллоидные растворы (золи) Методы получения
- •Строение коллоидных частиц
- •Коагуляция. Седиментация. Пептизация
- •Молекулярно-кинетические свойства коллоидных растворов
- •Осмотическое давление
- •Биологическое значение явления осмоса
- •Механизмы, участвующие в сохранении изоосмии:
- •Оптические свойства коллоидных систем
- •Растворы высокомолекулярных соединений
- •Свободная и связанная вода в коллоидных pacтвopax
- •Свойства растворов вмс
- •Денатурация
- •2. Белки; биологическая роль Аминокислоты
- •Содержание белков в организме и тканях
- •Методы выделения белков
- •Методы фракционирования и очистки белков
- •Физико-химические свойства белков
- •Аминокислоты
- •Ациклические аминокислоты
- •Структура белковой молекулы
- •Классификация белков
- •Химия сложных белков
- •3. Нуклеиновые кислоты
- •Нуклеотиды и нуклеозиды
- •Структура днк
- •Рибонуклеиновые кислоты
- •4. Ферменты
- •Биосинтез и клеточная локализация ферментов
- •Химическая природа ферментов
- •Строение ферментов
- •Активный центр фермента
- •Регуляция активности ферментов
- •Механизм действия ферментов
- •Основные свойства ферментов
- •2. Зависимость активности ферментов от рН среды.
- •Факторы, определяющие активность ферментов
- •Активирование и ингибирование ферментов
- •Типы ингибирования
- •Классификация и номенклатура ферментов
- •Применение ферментов.
- •Использование иммобилизованных ферментов для производства биологических соединений
- •Иммуноферментный анализ и его использование в ветеринарии
- •5. Химия витаминов
- •Классификация и номенклатура витаминов
- •I. Жирорастворимые витамины
- •II. Витамины, растворимые в воде
- •Витамин d, антирахитический, кальциферол
- •Витамин e, антистерильный, токоферолы
- •Витамин к, антигеморрагический (филлохинон)
- •Витамин q (убихинон)
- •Водорастворимые витамины
- •Витамин b1, антиневритный, тиамин
- •Витамин b2, рибофлавин
- •Витамин b3, пантотеновая кислота
- •Витамин b5, pp, никотинамид, ниацин, антипеллагрический
- •Витамин b6, адермин, пиридоксол
- •Витамин b12, кобаламин, антианемический
- •Фолиевая кислота
- •Витамин с (аскорбиновая кислота)
- •Биотин, витамин h
- •6. Гормоны
- •Гормоны гипофиза
- •Поджелудочная железа
- •Гормоны щитовидной железы
- •Гормоны надпочечников
- •Гормоны коры надпочечников
- •Гормоны половых желез
- •Гормоны тимуса (вилочковой железы)
- •Гормоны местного действия
- •7. Обмен веществ и энергии
- •Основные этапы обмена веществ
- •Биологическое окисление
- •Окислительное фосфорилирование
- •Токсичность кислорода
- •8. Химия и обмен углеводов
- •Моносахариды
- •Производные моносахаридов.
- •Полисахариды (гликаны)
- •Гетерополисахариды (гетерогликаны)
- •Обмен углеводов
- •Катаболизм глюкозы
- •Гликогенолиз
- •Биосинтез углеводов
- •Биосинтез гликогена (гликогенез)
- •Регуляция углеводного обмена.
- •9. Химия и обмен липидов
- •Химическое строение нейтральных жиров
- •Жирные кислоты.
- •Нейтральные гликолипиды
- •Фосфолипиды (фосфатиды)
- •Сфинголипиды
- •Двойной липидный слой мембран
- •Обмен липидов
- •Переваривание липидов в желудочно-кишечном тракте
- •Промежуточный обмен липидов
- •Энергетический баланс β-окисления жирных кислот
- •Метаболизм ацетил-коэнзима а
- •Пути образования кетоновых тел
- •Биосинтез липидов
- •Метаболизм стеринов и стеридов
- •Липосомы
- •10. Обмен белков
- •Биологическая ценность белков
- •Нормы белка в питании животных
- •Белковые резервы организма
- •Обмен простых белков
- •Переваривание белков в желудочно-кишечном тракте моногастричных животных
- •Переваривание белков в кишечнике.
- •Особенности переваривания белков у жвачных животных
- •Дезаминирование аминокислот
- •Трансаминирование – непрямой путь дезаминирования аминокислот
- •Декарбоксилирование аминокислот
- •Окислительное расщепление аминокислот
- •Особенности обмена отдельных аминокислот
- •11. Биосинтез белка
- •Генетический код
- •Этапы синтеза белка
- •Мультиферментный механизм синтеза белка
- •12.Обмен нуклеиновых кислот Переваривание нуклеиновых кислот в желудочно-кишечном тракте
- •Промежуточный обмен нуклеиновых кислот Распад нуклеиновых кислот в тканях
- •Пиримидиновые основания
- •Биосинтез нуклеиновых кислот
- •Рекомбинантные молекулы и проблемы генной инженерии
- •Клонирование животных
- •Метод молекулярной гибридизации
- •Принцип метода
- •Способы гибридизации
- •Метод блоттинга по Саузерну
- •Полимеразная цепная реакция (пцр)
- •Необходимые приборы и реактивы
- •13. Обмен воды и солей
- •Вода, ее содержание и роль в организме
- •Потребность животного организма в минеральных веществах, их поступление и выделение
- •Микроэлементы
- •14. Биохимия крови
- •Физико-химические свойства крови
- •Буферные системы крови
- •Плазма крови и ее химический состав
- •Белки плазмы и сыворотки крови
- •Небелковые азотистые вещества крови
- •Форменные элементы крови
- •15. Биохимия мышечной ткани
- •Механизм сокращения мышцы
- •Азотистые экстрактивные вещества мышц
- •Минеральные вещества
- •Окоченение мышц
- •16. Биохимия молока и молокообразования
- •17. Биохимия почек и мочи
- •Патологические компоненты мочи
- •Особенности мочи птиц
- •18. Биохимия кожи и шерсти
- •19. Биохимия яйца
- •Биосинтез компонентов яйца
- •Предметный указатель
- •Приложения
- •Рекомендуемая литература
- •Тесты для проверки биохимических
- •Глава 8. Химия обмена углеводов
- •24. Сложноэфирные связи в молекулах триацилглицеролов подвергаются ферментативному гидролизу при участии:
11. Биосинтез белка
Биосинтез белка является сложным процессом, происходящим во всех клетках, органах и тканях организма. Наибольшее количество белка синтезируется в печени. Белоксинтезирующая система включает около 300 соединений, в том числе:
набор всех 20 аминокислот, из которых синтезируется белок;
минимум 20 различных т-РНК;
минимум 20 различных ферментов – аминоцил-тРНК-синтетаз, обладающих специфичностью к определенной аминокислоте;
рибосомы, АТФ и АТФ-генерирующую систему ферментов; ГТФ, ионы Mg2+, и-РНК, несущую информацию о синтезируемом белке;
белковые факторы, принимающие участие на различных этапах синтеза белка.
Рибосомы – рибонуклеопротеиды, состоящие на 50-65 % из рибосомальной РНК и белка – 35-50 %. Известно, что рибосомы животных клеток (эукариотов) в 2 раза крупнее (80 S) рибосом бактерий (70 S) (прокариот). Рибосомы состоят из двух частиц, 60 S и 40 S (рибосомы животных клеток – 80 S) и 50 S и 30 S (рибосомы бактерий – 70 S). Количество рибосом в одной клетке составляет приблизительно 100000. В присутствии ионов Mg2+ рибосомы распадаются на две части (60 и 40 S). Рибосома животных клеток содержит 3 вида РНК – 28, 18 и 5S и свыше 70 различных белков.
Общую схему строения рибосом животных клеток можно представить в следующем виде:
РНК рибосом синтезируется на матрице ДНК в ядре. Рибосомные белки имеют цитоплазматическое происхождение, затем они транспортируются в ядрышки, где происходит формирование рибосомных субчастиц. После этого субчастицы переходят в цитоплазму и несколько рибосом (до 50-80 рибосом) вместе с информационной РНК образуют полисомы или полирибосомы - место синтеза белка:
Аминоацил-тРНК-синтетазы – это ферменты с молекулярной массой (≈) 100000 Да, обеспечивающие активирование аминокислот и связывание их с т-РНК. Эти ферменты абсолютно специфичны, то есть узнают только одну какую-либо аминокислоту (а) и т-РНК. Считают, что этот фермент имеет три активных центра связывания: для аминокислоты, т-РНК и АТФ. Количество этих ферментов должно быть не менее 20 – для каждой аминокислоты отдельно.
Транспортные РНК. На долю т-РНК приходится 10-15 % из общего количества РНК, для каждой аминокислоты имеется своя т-РНК, а для некоторых аминокислот по несколько т-РНК, например для серина – 5, лизина и глицина по 4 разных т-РНК. Молекулярная масса большинства т-РНК колеблется в пределах 24000-29000 Да, они содержат от 75 до 85 нуклеотидов. т-РНК имеют сходную структуру, с тремя участками связывания: на 3'-гидроксильном конце у всех т-РНК имеется триплет ЦЦА- ОН, к которому через 3'-OH присоединяется специфическая аминокислота. Следующий связывающий участок – антикодон из трех нуклеотидов. Антикодон комплементарен кодону и-РНК. Например,
5'- концевой нуклеотид во всех т-РНК это ГМФ со свободной 5'-фосфатной группой (рис. 11.1.).
основание
Рис.11.1. Обобщенная схема вторичной структуры т-РНК, представленной в форме клеверного листа. Черные кружки соответствуют основаниям в спаренных областях, связанным водородными связями; светлые кружки соответствуют неспаренным основаниям. R - пуриновый нуклеозид; Y - пиримидиновый нуклеозид.
Функция т-РНК – специфическое связывание каждой т-РНК со своей аминокислотой.
и-РНК (информационная РНК) – переносит информацию для синтеза белка от ДНК к рибосоме, служит матрицей, на которой происходит синтез белка. и-РНК синтезируется на ДНК по правилу комплементарности, является копией участка ДНК (гена, цистрона). Размер молекулы зависит от размера белка. Молекула и-РНК образуется в виде предшественника, затем происходит созревание, то есть удаление участков интронов, не входящих в состав зрелой молекулы:
Участки экзонов сшиваются в процессе созревания и-РНК. Полиадениловый хвост на 3'-конце обеспечивает стабильность иРНК. и-РНК комплементарна определенному участку молекулы ДНК, например:
Генетический код. Генетическая информация закодирована в ДНК в виде последовательности нуклеотидов и эта последовательность переводится в нуклеотидную потельность и-РНК. Код является триплетным, то есть информация для каждой аминокислоты состоит из трех нуклеотидов. Например, для включения в белковую молекулу фенилаланина код содержит УУУ- триплет из молекул уридиловой кислоты (таблица 11.1.). Генетический код является вырожденным, то есть для кодирования одной аминокислоты имеется несколько кодонов. Код является непрерывным, то есть отсутствуют знаки, сигналы, обозначающие начало и конец кода. Например: АЦЦЦТГААЦ и т.д. Код является универсальным – для всех живых систем от E.Coli до человека. Из мыслимых 64 кодонов 61 имеет смысл, то есть кодируют определенную аминокислоту, а кодоны УАГ, УАА, УГА кодируют терминацию.
Таблица 11.1.