
- •153. Комплекс Гольжди. Строение. Функция.
- •154. Лизосомы. Происхождение, функция.
- •155. Роль протеасом в деградации белков.
- •156. Макромолекулярные комплексы цитоплазмы: протеосомы, апоптосомы.
- •157. Апоптоз. Сигнальные механизмы апоптоза.
- •158. Индуцированные плюрипотентные клетки. Механизм получения и применение в клеточной терапии.
- •159. Эмбриональная стволовая клетка.
- •160. Митоз. Кариокинез и цитокинез.
- •161. Ген p53 и опухолевая трансформация клеток.
- •162. Центросома. Строение. Функции.
- •163. Митохондрии. Строение, функция.
- •164. Протоонкогенны и онкосупрессоры в регуляции клеточного цикла.
- •165. Клеточный цикл. Точка рестрикции.
- •166. Циклин-зависимые протеинкиназы и циклины в регуляции клеточного цикла.
- •167. Веретено деления. Молекулярное строение и функция.
- •168. Нетипичные формы митоза. Полиплоидия и политения.
- •169. Дифференцировка клетки. Клеточные типы.
- •170. Гомейозисные гены. Значение гомейозисных генов для морфогенеза.
- •171. Гаструляция. Типы гаструляции.
- •172. Биологическая роль мейоза. Кроссинговер и комбинативная изменчивость.
- •173. Сперматогенез: размножение, рост, созревание, формирование.
- •174. Овогенез: размножение, рост, созревание.
- •175. Виды бластул в зависимости от типа яйцеклетки. Образование бластулы.
- •176. Первичная эмбриональная индукция. Нейруляция и образование сомитов.
- •177. Гибридизация in situ. Применение метода на практике.
- •178. Днк- зонд для диагностики опухолевых трансформаций клетки.
- •179. Строение сперматозоидов млекопитающих. Особенности строения ядра. Акросома. Аксонема.
- •180. Строение яйцеклетки млекопитающих.
- •181.Клонирование.
- •182. Клеточный цикл. Интерфаза.
- •183. Клеточный цикл. Митоз.
- •184. Канцерогены и тератогены. Принцип действия. Примеры
- •185. Стволовые клетки. Тотипотентные, плюрипотентные, унипотентные, полипотентные.
- •186. Онтогенез. Стадии, критические периоды развития.
- •187. Зародышевые листки: образование, производные.
- •188. Уровни организации хромосомы.
- •189. Уровни организации хромосомы.
- •192. Мозаичность. Механизмы возникновения. Примеры.
- •193. Экспрессивность. Пенентратность.
- •194. Основные виды хромосомных аберраций.
- •195. Определение понятия «ген». Классификация генов. Современное состояние теории гена.
- •Свойства гена
- •Классификация
- •196. Метод полимеразной цепной реакции. Применение в биологии и медицине.
- •Пцр используется во многих областях для проведения анализов и в научных экспериментах. Установление отцовства
- •Медицинская диагностика
- •Персонализированная медицина
- •Клонирование генов
- •Секвенирование днк
- •Мутагенез
- •197. Этапы пцр
- •198.Метод fish и его применение в медицине.(см вопрос 201)
- •199. Значение внешней среды для формирования фенотипа.
- •200.Рнк-интерференция. Биологическая роль этого процесса.
- •Иммунитет
- •Экспрессия генов
- •201. Многоцветная fish. Применение в медико-генетическом консультировании.
- •202. Эпигенетические механизмы влияния окружающей среды.
- •203. Принцип, лежащий в основе Международной Денверской классификации хромосом человека.
- •204. Полиморфизм генов
- •205. Приведите примеры заболеваний человека и особенности наследования признаков, сцепленных с х-хромосомой.
- •206. . Приведите примеры заболеваний человека и особенности наследования признаков, сцепленных с у-хромосомой.
- •207. Назовите особенности наследование и формирования признаков, контролируемых у-хромосомой. Приведите примеры заболеваний человека, сцепленных с у-хромосомой.
- •208. Приведите примеры генных заболеваний человека и особенности наследования признаков, при цитоплазматической наследственности.
- •209.Приведите примеры генных заболеваний человека и особенности наследования признаков, контролируемых аутосомами.
- •210. Модификационная изменчивость. Назовите основные характеристика модифткационной изменчивости.
- •211. Принцип и применение метода блоттинга по Саузерну.
- •212. Что такое фенокопии и генокопии? Приведите примеры.
- •213.Митохондриальная днк: строение, наследование. Заболевания, связанные с митохондриальной днк.
- •214.Методы и условия применения прямой днк-диагностики.
- •215. Методы прямой днк-диагностики.
- •216.Принцип метода блоттинга по Саузерну. Применение в биологии и медицине.
- •217.Альтернативный сплайсинг. Приведите примеры
- •218. Генетические механизмы формирования групп крови по системе аво.
- •219. Центральная догма молекулярной биологии.
- •220. Клинико-генеалогический метод.
- •221. Использование fish метода в диагностике наследственных заболеваний.(см.Вопрос №201)
- •222. Значение проекта «Геном человека» для медицины
- •223. Международная Парижская классификация хромосом человека
- •224. Короткие тандемные повторы. Их роль в днк-диагностике
- •225.Типы рнк. Функции различных типов рнк.
- •226. Мобильные генетические элементы – транспозрны, ретротранспозоны.
- •227. Морфозы. Приведите пример морфоза у человека.
- •229.Лайонизация. Механизм и биологическое значение лайонизации.
- •230. Характеристики модификационной изменчивости.
- •231.Генетический груз» в человеческих популяциях.
- •232.Обратная транскрипция.
- •233. Назовите основные типы регуляции экспрессии генов на примере лактозного оперона Кишечной палочки.
- •234.Последовательность процессов транскрипции у эукариот.
- •235.Заболевания человека, сцепленные с полом.
- •236.Применение полиморфных маркеров в лабораторной диагностике.
- •237.Механизм созревания мРнк.
- •238.Свойства генетического кода и их характеристики.
- •239.Строение генов у про- и эукариот.
- •240.Как связаны между собой метилирование и гистоновый код в процессе реализации генетической информации в клетке?
- •242. Альтернативный сплайсинг. Механизм. Биологическая роль.
- •243 Трансляция, как стадия синтеза белка. Инициация, элонгация, терминация.
- •2)Элонгация трансляции
- •3)Терминация трансляции
- •244.Виды хромосомных аберраций. Примеры заболеваний
- •245. Виды генных мутаций. Примеры заболеваний (Генетика .Глава 3.Стр.10)
- •11.Генные мутации ,вызывающие заболевания ,могут быть обусловлены разными дефектами днк гена-мишени
- •247. Современные методы цитогенетики.
- •248.249.Цитологические основы первого и второго законов Менделя
- •250. Цитологические основы третьего закона Менделя
- •251)Хромосомная теория наследственности т. Моргана.
- •252)Анализирующее скрещивание, как метод генетического анализа.
- •256. Косвенная днк диагностика.
- •257. Митохондриальные заболевания. Особенности их наследования.
- •258. Половой хроматин. Лайонизация. Физиологический клеточный мозаицизм.
- •259. Генные мутации. Механизмы их возникновения.
- •260. Закон гомологических рядов н.И. Вавилова. Медицинское значение.
- •266. Репарация днк. Виды репарации.
- •267. Механизмы эпигенетического регулирования экспрессии генов.
- •268. Принцип метода секвенирования днк.
- •269. Структура генома.
- •270) Комплементарная, клонированная, рекомбинантная днк.
- •271) Полиморфные гены.
- •272) Тандемные повторы генома человека.
- •273. Дифференциальное окрашивание хромосом.
- •274. Методы цитогенетики.
- •275. Что такое полиморфизм генов?
- •276. Что такое полиморфизм генов?
- •277. Хромосомные заболевания человека, связанные с аутосомами.
- •278. Генные заболевания человека, связанные с аутосомами.
- •279. Методы выявлений генных мутаций у человека.
- •280. Определение и структура белок-кодирующего гена эукариот.
- •281. Классификация генов.
- •282. Что такое вектор? Генетические векторы.
- •283.Рекомбинантные днк. Переносчики генетической информации (векторы).
- •284.Рибозимы. Их биологическая роль.
- •285.Днк – зонды. Их применение в определении наследственных заболеваний.
- •286.Псевдогены
- •287. Виды и роль тандемных повторов в геноме человека.
- •288. Перечислите базовые регуляторные элементы генома.
- •289. Методы клонирования днк.
- •290. Методы получения генов для трансгенеза.
- •291. Методы клонирования генов.
243 Трансляция, как стадия синтеза белка. Инициация, элонгация, терминация.
Трансляция – процесс биосинтеза полипептидных белков в живых клетках.
Трансляция (от англ. translation – перевод) – перевод генетической информации, заключённой в мРНК, в линейную последовательность аминокислот в полипептидной цепи. Этот перевод осуществляется посредством генетического (биологического) кода. )
1)Стадия инициации .Чтобы начать синтез, нужно создать комплекс , в который будут входить все необходимые элементы :
- матричные РНК своим первым триплетом (метионин)
-факторы инициации (чтобы метионин в малый отдел субъединицы вошел)
-Процесс энергозависимый(молекулы ГТФ)
-2 белковых фактора инициации IF-1 ,IF-3 связываются с субъединицей 30S(малой субъединицей рибосомы).Затем IF 2 образует комплекс ГТФ ,что облегчает связывание 30S-субъединицы с мРНК и прикрепление к тРНК к инициирующему кодону. У эукариот инициирующий кадон- метионин .Потом большая субъединица-50S присоединяется к комплексу. Идет освобождение факторов инициации и гидролиз ГТФ до ГДВ и неорганического фосфата .Таким образом, 30S+ 50S+ инициирующий комплекс ,содержащий тРНК - метионин в тРНК связывающем участке ,называется пептидным участком.
2)Элонгация трансляции
Рибосома содержит 2 функциональных участка для взаимодействия с тРНК :
Аминоациальный(АКЦЕПТОРНЫЙ) и пептидный( ДОНОРНЫЙ).
Аминоацил-т-РНК попадает в акцепторный участок рибосомы и взаимодействует с образованием водородных связей между триплетами кодона и антикодона. После образования водородных связей система продвигается на 1КОДОН и оказывается в донорном участке .Одновременно с освободившемся акцепторном участке оказывается новый кодон, и к нему присоединяется соответствующий аминоацил-т-РНК.
Пептидилтрансферазный участок рибосомы переносит аминокислоту из донорного участка в аминоацильный , и между аминокислотами образуется ПЕПТИДНАЯ СВЯЗЬ. При этом образуется н-пептидил-т-РНК. Она перемещается в донорный участок вместе с триплетом мРНК. Комплекс «делает шаг» вперед. Далее цикл повторяется.
3)Терминация трансляции
Секвенируя цепь мРНК по триплетам и соответственно удлиняя полипептидную цепь, транслирующая рибосома доходит до конца кодирующей последовательности и встречается с одним из трех триплетов ,не кодирующих аминокислоты и обозначаемых как стоп-кодоны, или кодоны терминации – UAG, UAA или UGA.В результате завершающей транслокации полипетидил-тРНК оказывается связанной с последним значащим триплетом в Р-участке рибосомы, а в А-участке устанавливается кодон терминации. В клетке нет аминоцил-т-РНК ,способных комплементарно связываться с терминирующим кодоном, и потому А-участок не заполняется обычным акцепторным субстратом ,каковым является аминоацил-тРНК. Вместо этого в дело вступают специальные белки ,называемые факторми терминации , или факторами освобождения. Один из них, RF1 , взаимодействует непосредственно с кодоном терминации в А-участке, а другой,RF3 ,при содействии первого и с участием ГТФ – с большей субчастицей рибосомы .Результатом связывания этих факторов с рибосомой происходят реакции ,приводящие к отделению вновь синтезированной мРНК из рибосомы.
(все слово в слово по слайдам Волкова)