
- •153. Комплекс Гольжди. Строение. Функция.
- •154. Лизосомы. Происхождение, функция.
- •155. Роль протеасом в деградации белков.
- •156. Макромолекулярные комплексы цитоплазмы: протеосомы, апоптосомы.
- •157. Апоптоз. Сигнальные механизмы апоптоза.
- •158. Индуцированные плюрипотентные клетки. Механизм получения и применение в клеточной терапии.
- •159. Эмбриональная стволовая клетка.
- •160. Митоз. Кариокинез и цитокинез.
- •161. Ген p53 и опухолевая трансформация клеток.
- •162. Центросома. Строение. Функции.
- •163. Митохондрии. Строение, функция.
- •164. Протоонкогенны и онкосупрессоры в регуляции клеточного цикла.
- •165. Клеточный цикл. Точка рестрикции.
- •166. Циклин-зависимые протеинкиназы и циклины в регуляции клеточного цикла.
- •167. Веретено деления. Молекулярное строение и функция.
- •168. Нетипичные формы митоза. Полиплоидия и политения.
- •169. Дифференцировка клетки. Клеточные типы.
- •170. Гомейозисные гены. Значение гомейозисных генов для морфогенеза.
- •171. Гаструляция. Типы гаструляции.
- •172. Биологическая роль мейоза. Кроссинговер и комбинативная изменчивость.
- •173. Сперматогенез: размножение, рост, созревание, формирование.
- •174. Овогенез: размножение, рост, созревание.
- •175. Виды бластул в зависимости от типа яйцеклетки. Образование бластулы.
- •176. Первичная эмбриональная индукция. Нейруляция и образование сомитов.
- •177. Гибридизация in situ. Применение метода на практике.
- •178. Днк- зонд для диагностики опухолевых трансформаций клетки.
- •179. Строение сперматозоидов млекопитающих. Особенности строения ядра. Акросома. Аксонема.
- •180. Строение яйцеклетки млекопитающих.
- •181.Клонирование.
- •182. Клеточный цикл. Интерфаза.
- •183. Клеточный цикл. Митоз.
- •184. Канцерогены и тератогены. Принцип действия. Примеры
- •185. Стволовые клетки. Тотипотентные, плюрипотентные, унипотентные, полипотентные.
- •186. Онтогенез. Стадии, критические периоды развития.
- •187. Зародышевые листки: образование, производные.
- •188. Уровни организации хромосомы.
- •189. Уровни организации хромосомы.
- •192. Мозаичность. Механизмы возникновения. Примеры.
- •193. Экспрессивность. Пенентратность.
- •194. Основные виды хромосомных аберраций.
- •195. Определение понятия «ген». Классификация генов. Современное состояние теории гена.
- •Свойства гена
- •Классификация
- •196. Метод полимеразной цепной реакции. Применение в биологии и медицине.
- •Пцр используется во многих областях для проведения анализов и в научных экспериментах. Установление отцовства
- •Медицинская диагностика
- •Персонализированная медицина
- •Клонирование генов
- •Секвенирование днк
- •Мутагенез
- •197. Этапы пцр
- •198.Метод fish и его применение в медицине.(см вопрос 201)
- •199. Значение внешней среды для формирования фенотипа.
- •200.Рнк-интерференция. Биологическая роль этого процесса.
- •Иммунитет
- •Экспрессия генов
- •201. Многоцветная fish. Применение в медико-генетическом консультировании.
- •202. Эпигенетические механизмы влияния окружающей среды.
- •203. Принцип, лежащий в основе Международной Денверской классификации хромосом человека.
- •204. Полиморфизм генов
- •205. Приведите примеры заболеваний человека и особенности наследования признаков, сцепленных с х-хромосомой.
- •206. . Приведите примеры заболеваний человека и особенности наследования признаков, сцепленных с у-хромосомой.
- •207. Назовите особенности наследование и формирования признаков, контролируемых у-хромосомой. Приведите примеры заболеваний человека, сцепленных с у-хромосомой.
- •208. Приведите примеры генных заболеваний человека и особенности наследования признаков, при цитоплазматической наследственности.
- •209.Приведите примеры генных заболеваний человека и особенности наследования признаков, контролируемых аутосомами.
- •210. Модификационная изменчивость. Назовите основные характеристика модифткационной изменчивости.
- •211. Принцип и применение метода блоттинга по Саузерну.
- •212. Что такое фенокопии и генокопии? Приведите примеры.
- •213.Митохондриальная днк: строение, наследование. Заболевания, связанные с митохондриальной днк.
- •214.Методы и условия применения прямой днк-диагностики.
- •215. Методы прямой днк-диагностики.
- •216.Принцип метода блоттинга по Саузерну. Применение в биологии и медицине.
- •217.Альтернативный сплайсинг. Приведите примеры
- •218. Генетические механизмы формирования групп крови по системе аво.
- •219. Центральная догма молекулярной биологии.
- •220. Клинико-генеалогический метод.
- •221. Использование fish метода в диагностике наследственных заболеваний.(см.Вопрос №201)
- •222. Значение проекта «Геном человека» для медицины
- •223. Международная Парижская классификация хромосом человека
- •224. Короткие тандемные повторы. Их роль в днк-диагностике
- •225.Типы рнк. Функции различных типов рнк.
- •226. Мобильные генетические элементы – транспозрны, ретротранспозоны.
- •227. Морфозы. Приведите пример морфоза у человека.
- •229.Лайонизация. Механизм и биологическое значение лайонизации.
- •230. Характеристики модификационной изменчивости.
- •231.Генетический груз» в человеческих популяциях.
- •232.Обратная транскрипция.
- •233. Назовите основные типы регуляции экспрессии генов на примере лактозного оперона Кишечной палочки.
- •234.Последовательность процессов транскрипции у эукариот.
- •235.Заболевания человека, сцепленные с полом.
- •236.Применение полиморфных маркеров в лабораторной диагностике.
- •237.Механизм созревания мРнк.
- •238.Свойства генетического кода и их характеристики.
- •239.Строение генов у про- и эукариот.
- •240.Как связаны между собой метилирование и гистоновый код в процессе реализации генетической информации в клетке?
- •242. Альтернативный сплайсинг. Механизм. Биологическая роль.
- •243 Трансляция, как стадия синтеза белка. Инициация, элонгация, терминация.
- •2)Элонгация трансляции
- •3)Терминация трансляции
- •244.Виды хромосомных аберраций. Примеры заболеваний
- •245. Виды генных мутаций. Примеры заболеваний (Генетика .Глава 3.Стр.10)
- •11.Генные мутации ,вызывающие заболевания ,могут быть обусловлены разными дефектами днк гена-мишени
- •247. Современные методы цитогенетики.
- •248.249.Цитологические основы первого и второго законов Менделя
- •250. Цитологические основы третьего закона Менделя
- •251)Хромосомная теория наследственности т. Моргана.
- •252)Анализирующее скрещивание, как метод генетического анализа.
- •256. Косвенная днк диагностика.
- •257. Митохондриальные заболевания. Особенности их наследования.
- •258. Половой хроматин. Лайонизация. Физиологический клеточный мозаицизм.
- •259. Генные мутации. Механизмы их возникновения.
- •260. Закон гомологических рядов н.И. Вавилова. Медицинское значение.
- •266. Репарация днк. Виды репарации.
- •267. Механизмы эпигенетического регулирования экспрессии генов.
- •268. Принцип метода секвенирования днк.
- •269. Структура генома.
- •270) Комплементарная, клонированная, рекомбинантная днк.
- •271) Полиморфные гены.
- •272) Тандемные повторы генома человека.
- •273. Дифференциальное окрашивание хромосом.
- •274. Методы цитогенетики.
- •275. Что такое полиморфизм генов?
- •276. Что такое полиморфизм генов?
- •277. Хромосомные заболевания человека, связанные с аутосомами.
- •278. Генные заболевания человека, связанные с аутосомами.
- •279. Методы выявлений генных мутаций у человека.
- •280. Определение и структура белок-кодирующего гена эукариот.
- •281. Классификация генов.
- •282. Что такое вектор? Генетические векторы.
- •283.Рекомбинантные днк. Переносчики генетической информации (векторы).
- •284.Рибозимы. Их биологическая роль.
- •285.Днк – зонды. Их применение в определении наследственных заболеваний.
- •286.Псевдогены
- •287. Виды и роль тандемных повторов в геноме человека.
- •288. Перечислите базовые регуляторные элементы генома.
- •289. Методы клонирования днк.
- •290. Методы получения генов для трансгенеза.
- •291. Методы клонирования генов.
193. Экспрессивность. Пенентратность.
Ген, имеющийся в генотипе в необходимом для проявления количестве (1 аллель для доминантных признаков и 2 аллеля для рецессивных) может проявляться в виде признака в разной степени у разных организмов (экспрессивность) или вообще не проявляться (пенетрантность). Причины:
модификационная изменчивость (воздействие условий окружающей среды)
комбинативная изменчивость (воздействие других генов генотипа).
Экспрессивность – степень фенотипического проявления аллеля. Например, аллели групп крови АВ0 у человека имеют постоянную экспрессивность (всегда проявляются на 100%), а аллели, определяющие окраску глаз, – изменчивую экспрессивность. Рецессивная мутация, уменьшающая число фасеток глаза у дрозофилы, у разных особей по-разному уменьшает число фасеток вплоть до полного их отсутствия.
Другое определение:
Экспрессивность (генетика) — степень проявления в фенотиперазличных особей одного и того жеаллеляопределённого гена. Количественные показатели экспрессивности измеряются на основе статистических данных.
Экспрессивность гена означает степень выраженности проявлений гена. Как правило, любой геноконтролируемый признак варьирует в своем проявлении. Для наследственных болезней, особенно аутосомно-доминантных, варьирование в степени выраженности каждого симптома заболевания и даже в количестве симптомов заболевания является хорошо установленным фактом из-за того, что каждый больной подвергается клиническому обследованию. В общем виде причиной различной выраженности симптомов наследственного заболевания или варьирующей экспрессивности мутантного гена могут быть как генотипическая среда, т.е. другие гены организма, так и факторы внешней среды. К сожалению, конкретные причины варьирующей экспрессивности мутантных генов остаются неизвестными.
Пенетрантность – вероятность фенотипического проявления признака при наличии соответствующего гена. Например, пенетрантность врожденного вывиха бедра у человека составляет 25%, т.е. болезнью страдает только 1/4 рецессивных гомозигот. Медико-генетическое значение пенетрантности: здоровый человек, у которого один из родителей страдает заболеванием с неполной пенетрантностью, может иметь непроявляющийся мутантный ген и передать его детям.
194. Основные виды хромосомных аберраций.
Хромосомные аберрации (хромосомные мутации, хромосомные перестройки) — изменения структуры хромосом.
Классифицируют делеции (удаление участка хромосомы), инверсии (изменение порядка генов участка хромосомы на обратный), дупликации (повторение участка хромосомы), транслокации (перенос участка хромосомы на другую). Хромосомные перестройки носят, как правило, патологический характер и нередко приводят к гибели организма. Показано значение хромосомных перестроек в видообразовании и эволюции
Делеции (от лат. deletio — уничтожение) — хромосомные перестройки, при которых происходит потеря участка хромосомы. Делеция может быть следствием разрыва хромосомы или результатом неравного кроссинговера. По положению утерянного участка хромосомы делеции классифицируют на внутренние (интерстициальные) и концевые (терминальные).
Инверсия - изменение структуры хромосомы, вызванное поворотом на 180° одного из внутренних её участков.
Дупликация (лат. duplicatio — удвоение) — мутация, нарушающая структуру хромосом, представляет собой удвоение участка хромосомы, содержащего гены. Может произойти в результате ошибки при гомологичной рекомбинации, Ретротранспозиции, или из-за дубликации всех хромосомы.[1] Вторая копия гена часто не подвергается давлению селекции — так, мутация одной из копий гена не несет вреда организму. Следовательно, копии накапливают мутации быстрее, чем гены, существующие в одном экземпляре.
Транслока́ция — тип хромосомных мутаций, при которых происходит перенос участка хромосомы на негомологичную хромосому.
Отдельно выделяют реципрокные транслокации, при которых происходит взаимный обмен участками между негомологичными хромосомами, и Робертсоновские транслокации, или центрические слияния, при которых происходит слияние акроцентрических хромосом с полной или частичной утратой материала коротких плеч.
Особый вид реципрокных транслокаций представляют собой так называемые робертсоновские транслокации. В этом случае разрывы в двух акроцентрических хромосомах локализуются в области центромер или в непосредственной близости от них. Длинные плечи хромосом сливаются, а короткие теряются. Поскольку короткие плечи акроцентрических хромосом содержат гены рРНК, то их потеря никак не проявляется, так как множественные копии этих генов содержатся также в других акроцентрических хромосомах. Поэтому робертсоновская транслокация функционально является сбалансированной.
Реципрокные транслокации являются сбалансированной хромосомной перестройкой, при их формировании не происходит потери генетического материала.