
- •Химия Методические указания по выполнению лабораторных работ
- •Химия Методические указания по выполнению лабораторных работ
- •Содержание
- •Общие методические указания
- •Лабораторная работа №1 Правила безопасности при работе в лаборатории общей химии. Элементы техники лабораторных работ. Весы и взвешивание
- •Лабораторная работа №2 Основные законы химии. Теория
- •Лабораторная работа № 3. Определение молярной массы химического эквивалента металла
- •Лабораторная работа № 4 Определение состава кристаллогидрата
- •Экспериментальная часть
- •Лабораторная работа № 5 Основные классы неорганических соединений. Теория
- •Лабораторная работа № 6 Основные классы неорганических соединений: оксиды, основания и амфотерные гидроксиды
- •I. Оксиды их получение и свойства
- •II. Гидроксиды, их получение и свойства
- •Экспериментальная часть
- •Лабораторная работа № 8 Основные классы неорганических соединений. Соли
- •Опыт 5: Получение солей взаимодействием двух солей
- •Необходимый уровень подготовки студентов
- •4. Уметь писать уравнения реакций, отражающие химические свойства оксидов, гидроксидов, солей. Знать условия протекания до конца реакций ионного обмена
- •Лабораторная работа № 9 Растворы. Теория
- •Лабораторная работа № 10 Приготовление растворов заданной концентрации
- •Лабораторная работа № 11. Малорастворимые электролиты. Произведение растворимости
- •Лабораторная работа № 12 Кинетика химических реакций. Теория
- •Лабораторная работа № 14.
- •Лабораторная работа №15 Химическое равновесие. Теория
- •Лабораторная работа № 16 Химическое равновесие и условия его смещения
- •Лабораторная работа №17. Адсорбция. Теория
- •Лабораторная работа №18 Изучение адсорбции уксусной кислоты на угле.
- •Химия Методические указания по выполнению лабораторных работ
Лабораторная работа № 6 Основные классы неорганических соединений: оксиды, основания и амфотерные гидроксиды
Цель работы: изучить классификацию, номенклатуру, получение и химические свойства оксидов, оснований и амфотерных гидроксидов.
Оборудование и реактивы: спиртовка, штатив с бюреткой, держатель для пробирок, пинцет, шпатели, фильтровальная бумага, пробирки, пипетки, стеклянная трубочка, фарфоровая чашка, индикаторы: фенолфталеин и метиловый оранжевый, дистиллированная вода, порошкообразные CuO, MgO, CaO, ZnO, металлические натрий, 0,5н. растворы CuSO4, Al2(SO4)3, 2н. растворы NaOH, H2SO4, HCl, 30% раствор NaOH.
I. Оксиды их получение и свойства
Опыт 1: Получение оксидов разложением гидроксидов
В пробирку налить 1 мл раствора сульфата меди (II) и добавить раствор щелочи до образования осадка. Содержимое пробирки нагреть до изменения цвета осадка. Написать уравнения происходящих реакций и объяснить наблюдаемые изменения.
Опыт 2: Отношение оксидов к воде
Небольшое количество оксида кальция (на кончике шпателя) поместить в пробирку и прилить дистиллированную воду до растворения оксида. Прибавить две капли спиртового раствора фенолфталеина. Отметить окраску раствора, объяснить наблюдения и написать уравнение реакции.
Аналогичный опыт проделать с оксидом магния, для его растворения в воде содержимое пробирки нагреть до кипения. Объяснить наблюдения и написать уравнение реакции.
Проделать то же самое с небольшим количеством оксида меди (II). Объяснить различное отношение оксидов кальция, магния и меди к воде.
Опыт 3: Взаимодействие оксидов с основаниями и кислотами
В две пробирки поместить небольшое количество оксидов меди (II) и цинка. В каждую пробирку прилить по 3 – 4 мл 30% раствора щелочи. Пробирки нагреть. Объяснить различное отношение оксидов меди и цинка к щелочи. Написать уравнение протекающей реакции.
В пробирку поместить небольшое количество оксида меди (II), добавить 3 –4 мл раствора серной кислоты, содержимое пробирки нагреть. Объяснить наблюдения. Написать уравнение реакции.
II. Гидроксиды, их получение и свойства
Опыт 1: Получение растворимого основания
В фарфоровую чашку налить до половины дистиллированной воды, прибавить две капли спиртового раствора фенолфталеина. Из склянки с реактивом извлечь пинцетом кусочек натрия величиной с половину горошины, освободить его фильтровальной бумагой от масла и опустить в чашку с водой. Наблюдать за ходом реакции. Объяснить изменение окраски раствора. Написать уравнение реакции.
Опыт 2: Получение нерастворимого основания
В пробирку к 2 мл раствора сульфата алюминия добавить 0,5 мл раствора гидроксида натрия. Объяснить образование осадка. Написать уравнение реакции. Содержимое пробирки оставить до следующего опыта.
Опыт 3: Свойства амфотерных гидроксидов
Содержимое пробирки из предыдущего опыта распределить по двум пробиркам. В одну налить 1 – 2 мл соляной кислоты, а в другую – 30% раствор щелочи до растворения осадка. Написать уравнения реакций, объяснить растворение осадка в обеих пробирках.
НЕОБХОДИМЫЙ УРОВЕНЬ ПОДГОТОВКИ СТУДЕНТОВ
Знать номенклатуру основных классов неорганических соединений, в том числе традиционные названия наиболее распространенных оксидов и гидроксидов.
Знать классификацию и взаимосвязь между основными классами неорганических соединений, способы их получения и свойства.
Уметь составлять химические формулы по названию вещества и давать название веществу по его химической формуле.
Уметь писать уравнения реакций, отражающие химические свойства оксидов и гидроксидов.
ЛИТЕРАТУРА
Курс общей химии /Под ред. Н.В. Коровина.- М.: Высш. Шк., 1990.- С.147-152.
Н.Л. Глинка. Общая химия.- Л.: Химия, 1983.- С. 215-222.
Н.С. Ахметов. Общая и неорганическая химия.- М.: Высш. Шк., 1981.- С. 131-132.
Лабораторная работа №7
Основные классы неорганических соединений. Свойства азотной, серной и фосфорной кислот
Всостав молекул азотной, серной и фосфорной
кислот, кроме водорода и кислорода
входят типичные неметаллы - элементыVA
( азот и фосфор) и VIA
(сера) групп. В молекулах этих кислот
указанные элементы находятся в высших
степенях окисления: +5 для азота в HNO3
и фосфора в H3PO4,
и +6 для серы в H2SO4.
Следовательно, кроме характерных реакций
кислот – реакций восстановления катионов
водорода и ионного обмена, эти соединения
способны участвовать также и в окислительно
- восстановительных реакциях, обусловленные
изменением степени окисления элемента
Э (Э = N,
P,
S).
При этом возможен только процесс
восстановления: Эn+
+ me-
Э(n-m)+
следовательно, они потенциальные
окислители.
При сравнении окислительно - восстановительных потенциалов можно убедиться, что в ряду HNO3, H2SO4, H3PO4 окислительная активность уменьшается:
1.
NO3-
+ 4H+
+3e-
NO + 2H2O
; E0
= + 0,957 В
2.
SO42-
+ 4H+
+ 2e-
H2SO3
+ H2O
; E0
= + 0,231 В
3.
H3PO4
+2H+
+ 2e-
H3PO3
+ H2O
;
E0
= - 0,276
В
восстановление
окисление
Как видно из значений стандартных электродных потенциалов, окислительные свойства сильнее выражены у азотной кислоты, тогда как у фосфорной они выражены весьма слабо.
Таблица 1 Константы диссоциации минеральных кислот при 250С
-
Кислота
К1
К2
К3
Азотная
43,6
Серная
103
1,2х10-2
Фосфорная
7,52х10-3
6,3х10-3
1,26х10-12
Соляная
107
Данные,
приведенные в таблице 1 свидетельствуют,
что среди минеральных кислот самая
сильная – соляная, а в ряду серная
азотная фосфорная кислотность
резко падает.
Все соли азотной кислоты - нитраты хорошо растворимы в воде.
Серная и фосфорная кислота, будучи многоосновными, образуют кислые и средние соли.
В твердом состоянии существуют только растворимые в воде гидросульфаты щелочных металлов. Гидросульфаты щелочно-земельных и некоторых других металлов существуют лишь в водных растворах. Из средних солей серной кислоты (сульфаты) в воде нерастворимы бариевые, кальциевые, стронциевые и свинцовые.
Фосфорная кислота образует три типа солей. Все дигидрофосфаты растворимы в воде. Из гидрофосфатов и фосфатов в воде растворимы только соли щелочных металлов и аммония. Поэтому фосфорная кислота реагирует, с выделением водорода, только со щелочными металлами. При взаимодействии с другими металлами процесс их растворения ингибируется в результате образования защитного слоя нерастворимой соли.
Средние
соли фосфорной кислоты – фосфаты, кроме
(NH4)3PO4,
при прокаливании не разлагаются.
Гидрофосфаты при этом переходят в
пирофосфаты: 2Na2HPO4
Na 4P2O7+H2O
Пирофосфаты - соли пирофосфорной (Н4Р2О7), или двуфосфорной кислоты, которая является первым представителем полифосфорных кислот, в молекулах которых имеются –О3Р-О-РО3– цепочки с кислородным мостиком.
Двуфосфорная кислота хорошо растворяется в воде и является несколько более сильной кислотой, чем Н3РО4.
При прокаливании дигидрофосфаты и натрийаммоний гидрофосфат переходят в метафосфаты:
2NaH2PO4
NaPO3
+ H2O
NaNH4HPO4
NaPO3
+ H2O
+ NH3
Метафосфаты
соли метафосфорной кислоты (НРО3),
которая является продуктом реакции
оксида фосфора (V)cводой в мольном соотношении 1:1. Р2О5+ Н2О 2НРО3, а при ее
избытке образуется фосфорная (в
соответствии с номенклатуройIUPACее правильнее назвать ортофосорной, а
ее соли ортофосфатами): НРО3+ Н2О
Н3РО4.
Для ортофосфорной кислоты и ее солей характерна реакция с кислым раствором молибденовокислого аммония, в результате которой образуется желтый кристаллический осадок – кислый фосфорномолибденовокислый аммоний:
H3PO4+12(NH4)2MoO4+21HNO3
(NH4)3H4[P(Mo2O7)6]
+ 21NH4NO3+10Н2О
Серная кислота, в зависимости от ее концентрации, по разному реагирует с металлами. Так, разбавленная серная кислота реагирует, с выделением водорода, со всеми активными металлами, стоящими в ряду напряжения левее водорода (кроме стронция и свинца). Продуктами реакции концентрированной серной кислоты, в зависимости от условий и активности металла, могут быть SO2, SиH2S. При этом, она может реагировать и с металлами, стоящие правее водорода до серебра включительно. Например:
Cu
+ H2SO4(конц)
CuSO4
+ SO2
+ H2O;
4Zn
+ 5H2SO4(конц)
4ZnSO4
+ H2S
+ 4H2O;
H2S
+ H2SO4
S + SO2
+ 2H2O.
Так как сероводород взаимодействует с серной кислотой, поэтому в продуктах реакции взаимодействия ее с цинком могут оказаться SO2, SиH2S. Некоторые авторы считают, что окислительные свойства серной кислоты обусловлены наличием в реакционной среде сильной окислительно-восстановительной пары: - атомарный водород (водород в момент выделения, который оказывается первичным продуктом реакции серной кислоты с активными металлами) и сульфат анион:
Me +
H2SO4
2H + MeSO4
8H
+ SO42-
S
2-+
4H2O
Сульфаты термически относительно стойкие соединения и подвергаются разложению при высоких температурах (> 7000C). Только сульфат аммония разлагается при > 2100C. При этом, в зависимости от природы металла (катиона) продуктами реакции разложения могут оказаться оксид металла иSO3 [Al2(SO4)3 >580oC,Fe2(SO4)3 >600oC, ],SO2и кислород [CaSO4 (>960oC),CuSO4(>650oC),MgSO4(>1200oC)] а в случае (NH4)2SO4 аммиак и Н2SO4).
Азотная кислота, независимо от концентрации, реагирует с металлами и неметаллами с образованием смеси продуктов (NO2,NO,N2O,N2,NH3).
Водород при этом не выделяется.Этот факт также, как и в случае с концентрированной серной кислотой, можно объяснить наличием последовательных окислительно – восстановительных процессов. Если допустить, что в азотной кислоте, как и во всех других кислотах, первичным является процесс восстановления протона с образованием атомарного водорода:
Ме
+nH+Men++nH, то при дальнейшем
взаимодействии активной
окислительно-восстановительной пары
Н +N+5образуется
аммиак и все другие возможные продукты
последовательных превращений:
8Н
+ HNO3
NH3
+ 3H2O;
3NH3
+ 5HNO3 8NO
+ 7H2O
и т.д.
Образование NО2в растворах концентрированной азотной кислоты объясняется тем, что любое другое состояние азота (от –3 до + 2, то есть от аммиака доNO) в средеHNO3образует реакционноспособную окислительно-восстановительную паруN5+: N3- илиN5+: N2+. В результате этих преобразований образуется нереакционноспособная параN5+: N4+(то естьNO2в НNO3).
КонцентрированнаяHNO3Разбавленная
AuиPtне реаги- щелочные иCтяжелыми
руют, Fe,Cr,Al, щелочно- металлами
Niпассивирутся земельные
металлы,
NO
FeиZn
С остальными
тяжелыми N2ONH4NO3
металлами
NO2
Азотная
кислота с соляной в мольном соотношении
1 : 3 образует “царскую водку” (слово
“водка” уменьшительное от слова вода!).
HNO3+ 3HClCl2+NOCl+ 2H2O
Образовавшийся
нитрозил хлорид (NOCl) на
свету или при стоянии разлагается с
образованием атомарного хлора :NOClNO+Cl, а
оксид азота (II) в атмосфере
воздуха превращается в оксид азота
(IV): 2NO+O22NO2. Поэтому,
когда визуально наблюдают за процессом
взаимодействия соляной кислоты с
азотной, необходимо учесть, что
образовавшийся бурый, с едким запахом
газ -NO2является
продуктом вторичного процесса окисленияNO.
Таким
образом, образуется сильная окислительная
среда (Сl2,ClиNO). Особенно велика роль
атомарного хлора в процессах растворения
металлов в царской водке, в которой
растворимы даже благородные металлы (Au,Pt):
HNO3 + 3HCl + Au =AuCl3 + NO + 2H2O
Азотная и серная кислоты взаимодействуют со многими неметаллами, окисляя их до соответствующих кислот:
S + 2HNO3 = H2SO4 + 2NO
3P + 5HNO3 + 2H2O = 3H3PO4 + 5NO
B + 3HNO3 = H3BO3 + 3 NO2C + 4HNO3 = CO2 + 2H2O + 4NO2
C + 2H2SO4 = CO2 + 2SO2 + 2H2O
S + 2H2SO4 = 3SO2 + 2H2O
Термическое разложение нитратов сопровождается изменением степеней окисления элементов, входящих в состав нитрата:
Считается, что при разложении всех нитратов образуются соответствующие нитриты и кислород. Так как нитриты щелочных металлов термически стабильны, то процесс заканчивается образованием нитритов.
левее Mg MeNO2 + O2
от Mg до Сu
MeNO3
MeO + NO2
+ O2
правее Сu Me + NO2 + O2
Если соответствующий нитрит при этих температурах неустойчив, образуются продукты его разложения:
MeNO2 tMeO+NO2
Если при температуре разложения нитрата образовавшийся оксид термически неустойчив (оксиды благородных металлов), то в продуктах оказывается соответствующий металл - продукт разложения соответствующего оксида: МеО t Me+O2
Нитрат
аммония разлагается с образованием
оксида азота (I):
NH4NO3t N2O+ 2H2O